Title: 超薄氧化層厚度的萃取
Ultrathin GateOxide Thickness Determination
Authors: 張名君
Ming-Chun Chan
陳明哲
Dr. Ming-Jer Chen
電子研究所
Keywords: 氧化層厚度萃取;超薄氧化層;模擬器;ultrathin oxide;distortion;C-V simulation;oxide thickness dtermination
Issue Date: 1999
Abstract: 超薄控制閘氧化層厚度的萃取 研究生:張名君 指導教授:陳明哲博士 國立交通大學 電子工程學系 電子研究所碩士班 摘要 本論文主要是由電容-電壓特性曲線來萃取出等效的氧化層厚度。其中,我們考慮了量子效應的影響。不過在這篇論文中,我們並不直接去解薛丁格和波以森方程式,反而是利用了等效能隙的增加來模擬量子效應的影響。這是因為大部分的載子皆位於第一個能階上。文章中也有提出解波以森方程式的科學計算方法。論文中並提出一"還原"方法以解決當氧化層厚度小於1.5奈米時,電容-電壓特性曲線會發生失真的現象。藉由上述方法並利用電容-電壓特性曲線我們可以萃取出等效氧化層厚度。而閘極與積極雜質濃度亦可由此獲得。
Ultrathin Gate Oxide Thickness Determination Student: Ming-Chun Chang Advisor: Ming-Jer Chen National Chiao-Tung University Institute of Electronics Abstract The essential study of this thesis is on the extraction of effective oxide thickness from measured C-V characteristics. The quantum effects will be taken into consideration. However, instead of using self-consistent method combining Schrodinger and Poisson equations, the main idea of considering quantum effects in this thesis is to take an effective bandgap widening. This view point is based on the phenomenon that the first subband consists of a large population of carriers. The algorithm of the resultant simulator is fully provided. A "restored" method is suggested to solve the distortion problem of C-V curve for oxide thickness of below 1.5nm. By doing so, we can also extract effective oxide thickness from even distorted C-V characteristics. In addition, the dopings of poly-gate and substrate can be adequately obtained. Chinese Abstract ……………………………………………………...i English Abstract ……………………………………………........…...ii Acknowledgements ……………………………………........…….....iii Contents ……………………………………………………………...iv Table Captions ......................................................................................v Figure Captions ……………………………………………………....vi Chapter 1 Introduction ……………………………………………...1 Chapter 2 Model Establishment ………………………………….....2 2.1 Self-consistent Methods for n-type Si Inversion layers ……….…...2 2.2 A Simple Model for Quantization Effects ………………………....6 Chapter 3 Numerical Technique and Algorithm …………………..14 3.1 Basic Specification of the Simulation ……….…………………....14 3.2 The Algorithm of Simulation ………….….......………….……….16 Chapter 4 Results and Analyses ……………………………...…...19 4.1 Simulation Results ………………………………………...……...19 4.2 Experimental Analyses ……………...…………………................20 Chapter5 Conclusion ........................................................................22 References ...........................................................................................23 Vita
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT880428072
http://hdl.handle.net/11536/65711
Appears in Collections:Thesis