Title: Efficient Self-Evolving Evolutionary Learning for Neurofuzzy Inference Systems
Authors: Lin, Cheng-Jian
Chen, Cheng-Hung
Lin, Chin-Teng
資訊工程學系
電控工程研究所
Department of Computer Science
Institute of Electrical and Control Engineering
Keywords: Cooperative particle swarm optimization (CPSO);cultural algorithm (CA);elite-based structure strategy (ESS);neurofuzzy inference system (NFIS);symbiotic evolution
Issue Date: 1-Dec-2008
Abstract: This study proposes an efficient self-evolving evolutionary learning algorithm (SEELA) for neurofuzzy inference systems (NFISs). The major feature of the proposed SEELA is that it is based on evolutionary algorithms that can determine the number of fuzzy rules and adjust-the NFIS parameters. The SEELA consists of structure learning and parameter learning. The structure learning attempts to determine the number of fuzzy rules. A subgroup symbiotic evolution is adopted to yield several variable fuzzy systems, and an elite-based structure strategy is adopted to find a suitable number of fuzzy rules for solving a problem. The parameter learning is to adjust parameters of the NFIS. It is a hybrid evolutionary algorithm of cooperative particle swarm optimization (CPSO) and cultural algorithm, called cultural CPSO (CCPSO). The CCPSO, which uses cooperative behavior among multiple swarms, can increase the global search capacity using the belief space. Experimental results demonstrate that the proposed method performs well in predicting time series and solving nonlinear control problems.
URI: http://dx.doi.org/10.1109/TFUZZ.2008.2005935
http://hdl.handle.net/11536/8106
ISSN: 1063-6706
DOI: 10.1109/TFUZZ.2008.2005935
Journal: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume: 16
Issue: 6
Begin Page: 1476
End Page: 1490
Appears in Collections:Articles


Files in This Item:

  1. 000262221000008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.