Title: Investigation on Robustness of CMOS Devices Against Cable Discharge Event (CDE) Under Different Layout Parameters in a Deep-Submicrometer CMOS Technology
Authors: Ker, Ming-Dou
Lai, Tai-Hsiang
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
Keywords: Cable discharge event (CDE);electrostatic discharge (ESD);long-pulse transmission line pulsing (LP-TLP);transmission line pulsing (TLP)
Issue Date: 1-Nov-2008
Abstract: Cable discharge events (CDEs) have been found to be the major root cause of inducing hardware damage on Ethernet ICs of communication interfaces in real applications. Still, there is no device-level evaluation method to investigate the robustness of complementary metal-oxide-semiconductor (CMOs) devices against a CDE for a layout optimization in silicon chips. The transmission-line pulsing (TLP) system was the most important method used to observe the electrical characteristics of semiconductor devices under human-body model (HBM) electrostatic discharge (ESD) stress. To understand the physical characteristics and CDE robustness of on-chip protection devices, the long-pulse transmission-line pulsing (LP-TLP) system is proposed in this paper and used to simulate the influence of CDE on Ethernet-integrated circuits. The secondary breakdown characteristics of the CDE protection devices under different layout styles and parameters can be measured and analyzed by the proposed LP-TLP with pulsewidths of 500 or 1000 ns. Furthermore, measured results using the LP-TLP system are compared with results measured by the traditional 100-ns TLP system. The experimental results with silicon devices in 0.18-mu m CMOS process have shown that the CDE robustness of n-channel metal-oxide-semiconductor (NMOS) and p-channel metal-oxide-semiconductor (PMOS) devices in deep-submicrometer CMOS technology is much lower than their HBM ESD robustness. By using the proposed LP-TLP system, one set of design rules for I/O devices to sustain high CDE robustness in a given CMOS process can be evaluated and built up for chip layout.
URI: http://dx.doi.org/10.1109/TEMC.2008.2004582
http://hdl.handle.net/11536/8219
ISSN: 0018-9375
DOI: 10.1109/TEMC.2008.2004582
Journal: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY
Volume: 50
Issue: 4
Begin Page: 810
End Page: 821
Appears in Collections:Articles


Files in This Item:

  1. 000261573000006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.