Title: 以對數變換法求解非線性背包問題
A Logarithmic Method for Solving Nonlinear Knapsack Problems
Authors: 黎漢林
LI HAN-LIN
國立交通大學資訊管理研究所
Keywords: 非線性背包問題;對數方法;0-1 變數;Nonlinear knapsack problem;Logarithmic method;Binary variable
Issue Date: 2013
Abstract: 非線性背包問題(NKP)是最佳化研究中的經典問題。本研究所解之NKP 問題為在n 個物件中選取m 個以極大化, , n i j k i j k i j k a x x x < < Σ ,其中i x 為0-1 變數,而i, j ,k a 為常數。以傳統方法求解此NKP 以求得全域最佳解等同於處理一包含n 個0-1 變數及O(n3 )個不等式的線性規劃問題。本研究提出一對數轉換法將原NKP 轉換為0-1 線性規劃問題,其中之0-1 變數及限制式數均為2 mlog n。由於減少了許多的0-1 變數及不等式因而大大提高計算效率,尤其當n 很大而m 相對小時。本研究為期二年,各期之重點如下:第一年: 回顧經典背包問題之解法,並提出對數轉換法理論第二年: 發展對數變換演算法,加速解題效率,並應用對數轉換法求解大尺度相關問題。
Solving a nonlinear knapsack problem of maximizing , , n i j k i j k i j k a x x x < < Σ , where 1 n i i x m = Σ = and i x are binary variables, by current methods is equivalent to solve a linear 0-1 program containing n binary variables and O(n3 ) linear inequalities. This study proposes a logarithmic method to convert the same problem into a linear 0-1 program with only 2 mlog n binary variables and 2 mlog n inequalities. The proposed method is expected to be more computationally efficient than current methods. This research project will last for two years: #1; The first year focuses on the literature review and theoretical propositions of the proposed method. #1; The second year focuses on testing the computational efficiency of our method, comparing with existing algorithms of nonlinear knapsack programs, and resolving practically large scale management and engineering problems.
Gov't Doc #: NSC101-2221-E009-069-MY2
URI: http://hdl.handle.net/11536/94025
https://www.grb.gov.tw/search/planDetail?id=2860851&docId=406456
Appears in Collections:Research Plans