标题: | 非包尔-欧本海默分子动力学理论与在光化学中的应用 Non-Born-Oppenheimer Molecular Dynamic Theory and Its Application to Photochemistry |
作者: | 朱超原 SHU Chogen 国立交通大学应用化学系(所) |
公开日期: | 2009 |
摘要: | 自从2005 年8 月我被聘为国立交通大学助理教授以來,我们所取得的一个重要的 成就是;(1) 推导出一个新的非绝热的隧穿几率的解析公式,结合半古典 non-Born-Oppenheimer trajectory surface hopping 方法,该公式可以用于 non-Born-Oppenheimerdon 动力学的模拟中,并对分子动力学的模拟的计算精度有很大 的提高作用,特别是对光化学中各种锥形交叉引起的非绝热转移贡献可以更好的定量 描述。(2) 另一工作是使用非绝热的几率解析公式调节镭射參數來设计和控制化学反 应。(3) 新的计划涉及到半导体材料热电效应,使用热力狀态函數和第一原理电子结 构计算來研究。 对涉及三原子和四原子的非绝热的反应系统,我们将研究非绝热的隧穿效应,这个 效应可以解释O(3P)+ CO 反应的振动转动分布的实验结果,特别是对低振动态,能够 更合理解释理論和实验产生的差異。这个效应也可以用來解释实验S(1D) + H2/ D2 反应 中发现的非寻常同位素效应,而至今没有合理的理論计算结果及解释。目前,我们使 用high-level 第一原理电子结构计算方法(CASSCF)來计算O+CO 非绝热反应势能表 面。 当涉及到更大的多原子系统,我们应该考虑一种QM/MM 方法,处理非绝热跃迁问 题。对于反应中涉及到键的形成和断裂的原子和分子,我们用量子力学或者我们开发 的精密半古典方法來处理;对于其他没有键的形成和断裂的原子和分子,我们可以用 经典系综方法來描述。我们计画用这个思路首先研究azobenzene 光致異构化的机制的 trans-to-cis 和 cis-t-trans 变换和pyrazine 吸收光谱。目前,我们使用Born-Oppenheimer 近似及Frank-Condon 重叠的方法研究了pyrazine 的第一和第二激发态吸收光谱。 对于非绝热动力学涉及到能量和电子在不同相的介面传递(特别是超快过程)。核 的运动必须用量子化的概念來处理,而通常激发态势能面很难精确得到,我们将运用 原分所林圣贤院士发展的一种简谐微扰近似方法來处理该难题,一个改进的方向是包 含高阶的非简谐贡献,沿着这个思路我们已经成功地推导出非简谐效应的一阶修正, 并正在用于解释一些实验结果。二阶的简谐效应的推导将是下一步工作。目前,我们 做了初步的计算关于ZnCAPEBPP 吸收光谱,电子转移速率将是下一步工作。 I have been hired as an assistant professor in NCTU since August, 2005. A key accomplishment since then is that we have found an analytical formula for nonadiabatic tunneling probability in non-Born-Oppenheimer dynamics. This new formula can be implemented in semiclassical non-Born-Oppenheimer trajectory surface hopping method to treat nonadiabatic tunneling transition with great precision for MD simulation, especially in photochemistry in which various types of conic intersections play an important role. Another work is done involved controlling chemical reaction by using analytical switching probability formula to adjust laser parameters. The new project is carried out; thermoelectric effect of magnesium silicide is studied by using thermodynamical method with the presence of electric field. Those projects will be investigated further. For nonadiabatic reaction involved in triatomic and teratoimc systems, we propose to investigate nonadiabatic tunneling effects. This effect could explain experimental results of final rotation-vibrational distribution of O(3P)+ CO reaction with lower vibrational states in which the present theoretical studies are not in agreement with experiment. This effect could also explain unusual isotopic effect in S(1D) + H2/ D2 reaction which is observed in experiment but not in the present theoretical calculations. At the present, we have used high-level (CASSCF) a. b. initio method to compute very accurate potential energy surfaces for O+CO nonadiabatic reaction. For nonadiabatic transitions involved in large polyatomic systems, we consider kind of QM/MM method, in which the atoms and molecules involved in bond forming and breaking can be treated by quantum mechanics or by the our present sophisticated semiclassical method and those atoms an molecules not involved in bond forming and breaking can be treated as bath with using normal coordinates. We plan to apply this idea to investigate the mechanism of the trans-to-cis and cis-t-trans photoisomerization of azobenzene and the absorption spectrum of pyrazine. At the present, we have calculated absorption spectra of the first and the second excited states within the Born-Oppenheimer approximation plus Frank-Condon effect. For nonadiabatic dynamic simulation involved in interfacial electron transfer as well as energy transfer (especially for utrafast processes), the nuclear motions must be treated quantum mechanically. As in this case, accurate potential energy surfaces for excited states are not usual feasible, the perturbation method with harmonic approximation developed by Professor S. H. Lin (IAMS) are usually applied. The direction within the perturbation method will be studied in anharmonic effects, in which the first–order correction has been successfully derived and applications are on the way. The second-order correction should be derived in near future. At the present, we have done preliminary calculation about absorption spectra of ZnCAPEBPP in gas phase. We will study it in condense phase with connection to TiO2 semiconductor and simulate interfacial electron transfer rate. |
官方说明文件#: | NSC97-2113-M009-010-MY3 |
URI: | http://hdl.handle.net/11536/100832 https://www.grb.gov.tw/search/planDetail?id=1760521&docId=300594 |
显示于类别: | Research Plans |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.