标题: | 光电奈米材料与结构中激子之控制 Toward Control of Excitons in Photonic Nano-Materials and Structures |
作者: | 谢文峰 HSIEH WEN-FENG 国立交通大学光电工程学系(所) |
公开日期: | 2009 |
摘要: | 现代光子学研究的核心问题之ㄧ是控制光子与物质的交互作用。在过去十年间,为 了改进功能性量子光电子元件,电子狀态密度和局部的光子狀态密度(LDOS)的提升,已 经被利用來提高电子与光子之交互作用。尤其是将量子点 (QDs) 嵌入光子晶体 (photonic crystal, PhCs),提升LDOS 來增强电子 ─光子交互作用,以便作为单光子 源;相反地,在一个减少的LDOS 环境裡,降低电子 ─光子交互作用也是可能的。PhC 是一种周期性交替折射率的结构,因为有可控制且很高的LDOS,是一个接近理想的实验 平台來研究增强与抑制电子 ─光子交互作用。相较于量子点在一个均ㄧ的媒介中,光 子晶体的能带结构的 LDOS 可以调制嵌入的量子点电子 ─光子交互作用。 氧化锌(ZnO)是属于宽能隙的Ⅱ-Ⅵ半导体,室温时它的能隙约为3.37eV;而且具有 相当大的激子束缚能(60meV,优于GaN 的25 meV),因此在室温下氧化锌的萤光几乎是 由激子所决定。另外ZnO 还有对高能量輻射忍受和稳定性及易湿化学法蚀刻,适合于太 空上之应用及可制作成小尺寸元件。而ZnO 奈米结构近年來已被应用在生物医学、太阳 能电池、发光元件及光触媒等領域。因此氧化锌奈米结构是极佳的材料用來开发单光子 源、极化子雷射、太阳能转换、和生医感测等。 因为在ZnO 中有大激子束缚能和强电子-声子藕合之优点,本三年计划将逐一购置 单光子源侦测系统、丛集电脑(含第一原理计算软体)和原子层沉积系统,用以完成单光 子源系统的建立、ZnO 量子点的理論计算及PhC 的成长來研究单光子发光和高温凝态 Bose-Einstein Condensate;研究CuO 和Cu2O 之carrier multiplication 之行为,來 探讨以ZnO(intrinsic n-type)奈米柱和CuO/Cu2O(intrinsic p-type)量子点制成全固 态太阳能电池之可行性,并研究其载子转换之动态机制;以及ZnO 奈米材料与DNA 之表 面键结形成之表面态能阶导致之发光机制。了解氧化锌量子点UV PL 的发光机制及量子 点崁入光子晶体的动力学行之基础科学研究对发展及未來应用在光电产业上。 One of the core issues of modern optics is the subject of photon interaction with matter. Over the past decades, quantum and photonic structures with increased density of electronic states and local density of optical states (LDOS) have been exploited to enhance the electron-photon interaction for improving functional quantum photonic devices. Embedded quantum dots (QDs) as single photon sources, in particular, promise to see large improvements, while, the reverse is also possible in an environment with a decreased LDOS. Photonic crystals (PhCs), periodic arrays of alternating refractive index, are near-ideal test beds for such experiments. Their electromagnetic band structure modifies the LDOS so that the optical properties of the embedded QDs as compared those in bulks (homogeneous media). Zinc oxide (ZnO) is a typical wide and direct gap II-VI compound semiconductor (bandgap energy Eg = 3.37 eV at room temperature). The binding energy of free exciton of wurtzite ZnO crystallizes is known to be very large (60 meV as compared to its counterpart GaN of 25 meV). Therefore, the free exciton can be even present at room temperature when it is photoexcited above the band gap or resonant to the free exciton energy level. Besides, there are additional properties which make ZnO preferable over other wide-band-gap materials-- its high energy radiation stability and amenability to wet chemical etching making it a very suitable candidate for space applications providing an opportunity for fabrication of small-size devices. The ZnO nanostructure has recently been applied in biomedicine, solar cell, LED and photocatalyst. Therefore, the ZnO nanostructure is an extremely good candidate for pursuing single photon source, polariton laser-- Bose-Einstein condensates, solar energy conversion , and biosensing. With the merit of large exciton binding energy and strong electron-phonon coupling in ZnO, in this three proposal, we plan to purchase and to establish a single photon source detection system, PC-cluster (including first principle computation software) and Atomic Layer Deposition system for growing heterostructures as well as PhCs. We wish ZnO would have potential for exploring single photon emission and for achieving BEC at the higher temperature. These results may benefit both fundamental photonic study and photonic industrials. |
官方说明文件#: | NSC96-2628-M009-001-MY3 |
URI: | http://hdl.handle.net/11536/100876 https://www.grb.gov.tw/search/planDetail?id=1735032&docId=297076 |
显示于类别: | Research Plans |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.