标题: | 应用超快雷射技术于新颖量子物质和太阳能电池薄膜物理特性之研究 Study the Physical Properties of Novel Quantum Matters and Solar Cell Thin Films by Ultrafast Laser Techniques |
作者: | 吴光雄 WU KAUNG-HSIUNG 国立交通大学电子物理学系(所) |
关键字: | 超快雷射技术;石墨烯;拓朴绝缘体;太阳能电池薄膜铜铟镓硒;铜锌锡硫/ 硒;时间解析光激发-光/中红外/兆赫波探测;兆赫波时域光谱量测系统;超快 雷射镀膜与材料处理;ultrafast laser technique;graphene;topological insulator;solar cell thin films;CuIni_xGaxSe2/Cu2ZnSn(S;Se)4;time resolved optical pump-optical/MIR/THz probe;THz_time domain spectroscopy;ultrafast laser deposition and material processing |
公开日期: | 2015 |
摘要: | 在本三年计昼中,我们将延续前面几年有关利用超快光谱技术量测高温超导体、庞 磁阻、多铁等材料物理特性的经验,继续研究新颖量子物质-石墨烯与拓朴绝缘体的的 超快动力行为;同时也将投入超快光谱技术在太阳能电池薄膜的研究,并且将利用飞秒 级脉冲雷射蒸镀这些材料的薄膜和探讨超快雷射对这些材料进行退火处理与造型后,其 物理特性和转换效率的改变。本计昼拟使用的系统,包含非共轴光学参量放大器超连续 白光输出时间解析光激发-光检测系统、时间解析光波长可调光激发-光检测系统、时间 解析光激发-中红外波检测系统、兆赫波时域光谱量测系统、时间解析光激发-兆赫波检 测系统和超快雷射镀膜与退火处理系统等。 利用上述激发-探测实验,将量测不同掺杂的石墨烯与拓朴绝缘体的载子与声子的 弛缓与载子复合等动力行为、导电率动力行为、同调声子机制、电子能带结构等。利用 兆赫波时域光谱量测系统,将研究这些材料的兆赫电磁特性,包含复数折射率、导电率、 介电常数、化学位势和载子射散率与迁移率等。这些研究,将有助于瞭解这些材料的基 础物理特性,尤其是不同掺杂对这些材料的载子、声子与导电率等在迪拉克点附近的动 力学的影响;并开发这些新颖量子物质在制作新型超高速/高频/高效率电子和光电应用 元件、兆赫波应用元件、磁电耦合元件、自旋量子元件和非线性光学元件等的应用。在 拓朴绝缘体方面,我们亦将探讨调变元素比例(Bi2-xSbxTe3-ySey)及磁性/非磁性元素掺杂 (Cu, Mn doped BisSe〗)的单晶和薄膜样品,对物理特性的影响以及诱发超导性或磁性的 物理机制。 我们亦将利用超快光电技术来研究薄膜太阳能电池材料铜铟镓硒与铜锌锡硫/硒,其 中包含以超连续白光激发-光探测光谱量测该材料的超快载子动力学,如载子冷却、载 子复合与缺陷分析等,以期透过不同时间尺度的量测能取得一些重要的物理参数及协助 厘清该材料目前遇到的制程瓶颈,有助于将来突破效率理论值的技术研发。此外,我们 也将利用超短脉冲雷射蒸镀铜铟镓硒与铜锌锡硫/硒薄膜,并首度完成其相关的元件制 作,进而帮助探讨其电性;并利用超快雷射对铜铟镓硒与铜锌锡硫/硒进行退火处理、造 型和微加工等处理,研究其对太阳能电池薄膜品质和转换效率影响的物理机制。 In this three-year project, we will extend our previous experience in studying the high Tc superconductor, colossal magnetoresistive material and multiferroics by using the ultrafast techniques to investigate the ultrafast dynamics of novel quantum matters such as graphene and topological insulators. We will also study the characteristics of solar cell thin films by ultrafast spectroscopy. Besides, we are going to prepare the samples by ultrafast laser deposition and study the changes of physical properties and transfer efficiency after ultrafast laser annealing and patterning. The ultrafast laser systems used in this project include a time-resolved optical pump-optical (NOPA supercontinuous white spectrum/ 800 nm) probe system (OPOP) , time-resolved optical(400 nm/800 nm) pump- MIR/THz probe systems (OPMP and OPTP), a THz time domain spectroscopy (THz-TDS) system, and ultrafast laser deposition, annealing and patterning systems. We will use the OPOP, OPMP and OPTP measurements to study the carrier and phonon dynamics, carrier combination, optical conductivity dynamics, the mechanism of the coherent phonon, and the electronic band structure of graphene and topological insulators with various dopant atoms. A THz-TDS system will be used to study the THz characteristics of these materials, such as complex refractive index, optical conductivity, dielectric constant, chemical potential, carrier scattering rate and mobility. The study of the ultrafast dynamics of these novel quantum matters by the ultrafast techniques will help us to understand the fundamental physical properties, especially the effect of various dopings on the carrier, phonon, and optical conductivity dynamics near Dirac point, and to develop the potentially revolutionary applications for high-speed/high-frequency/high-efficiency electronic and optoelectronic devices, terahertz -based devices, magneto-electric coupling devices, quantum spintronic devices and nonlinear optical elements. Besides, we will study the modulation of physical properties induced by controlling the chemical composition (Bi2-xSbxTe3-ySey) or magnetic/nonmagnetic doping (Cu, Mn doped BkSe3 single crystals or thin films) in topological insulators and investigate the possible mechanisms for the superconductivity and magnetism in these materials. We will also investigate the ultrafast carrier dynamics of CuIni-xGaxSe2/Cu2ZnSn(S,Se)4 (CIGS/CZTSe) solar cell thin films by using ultrafast laser techniques. The NOPA supercontinuous white spectrum pump-probe measurement will be used to study the ultrafast carrier dynamics, include carrier cooling process, carrier recombination, and defect-analysis. We expect to obtain important physical parameters from the carrier dynamics in femtosecond and picosecond timescales, and find the solution to break through the bottleneck of the development of these materials. Additionally, we will prepare the CIGS/CZTSe thin films by ultrafast pulsed laser deposition, develop the device and measure its electrical performances. We will also use the ultrafast laser annealing and patterning processes to improve the quality and transfer efficiency of these films. |
官方说明文件#: | NSC102-2112-M009-006-MY3 |
URI: | http://hdl.handle.net/11536/129981 https://www.grb.gov.tw/search/planDetail?id=11262375&docId=452874 |
显示于类别: | Research Plans |