标题: 氧化锌激子极子光电物理与动态特性之研究
Photonics Properties and Dynamics of Zno Related Exciton Polaritons
作者: 谢文峰
HSIEH WEN-FENG
国立交通大学光电工程学系(所)
关键字: 氧化锌;激子极子;发光二极体;微腔极子;玻色-爱因斯坦凝聚;极子雷射;声子_x000d_
动力学;极子涡流;脉冲雷射磊晶和原子层磊晶;ZnO;Exciton polariton;Light-emitting diodes;Microcavity polariton;Bose-Einstein_x000d_
condensates;Polariton laser;Phonon dynamics;Polariton vortex;Pulsed laser deposition;and_x000d_
Atomic layer deposition
公开日期: 2015
摘要: 共振腔极子(Cavity polaritons)源自于激子与共振腔局限的光子之间的强耦合。它们的色
散相对于裸态激子和光子已被显着地修改,导致极子色散曲线形成最低点为零动量的基态。
透过半光、半物质的准粒子的激子分量与晶格振动(声和光声子)之间的交互作用产生的散
射过程,激化激子的能量弛豫,达热平衡化和极子之非线性交互作用现象。微腔中的受激的
极子散射的最后基态已经被用来实现极子雷射(polariton laser)和极子的玻色 - 爱因斯坦凝聚
(Polariton BEC),导致许多有趣的的极子超流体(superfluidity)和极子旋涡(vortex)等宏观量子
现象以及许多应用元件,例如极子雷射,它不需要达到雷射阈值,因此具有非常低的阈值。
然而,演变成这样一个有用的极子雷射需要达到室温的极子BEC。宽能隙半导体,如
GaN 和ZnO,已被提出可作为室温操作极子雷射最适当候选材料;由于它们具有大的激子结
合能和振荡强度(oscillator strength)。室温极子雷射在块材和多量子阱GaN 的微腔中被实现;
然而,因ZnO 具优于GaN 的较大激子结合能和振荡强度,其拉比分裂(Rabi splitting) 在块材
ZnO 平面腔中约120 meV,在氧化锌微丝(microwires)中利用whispery gallery mode 共振可达
到200 meV。近日,透过本研究团队与本校的卢廷昌教授和美国密歇根大学邓辉教授合作,
我们利用ZnO 薄膜为基础的混合微腔,在负detuning 下达成室温极子雷射和光子雷射现象。
从本质上讲,假使未凝聚的激子和低极子(lower polariton branch)底部的能量差与LO 声子能
量共振的话,藉着LO 声子辅助可有效降低ZnO 块材微腔极子雷射阈值。
因此,本三年计划的目标是结合不同研究专长的主持人从事大家共同感兴趣的前瞻研
究课题来研究微腔极子非线性动力学。其研究主题包括:基于ZnO 材料和量子结构或其自组
成(self-formed)微腔中的极子-极子、极子-声子、和声光的散射过程,以及极子BEC 和超流
体的动力学研究等。因此,本子计画(子计画一)将集中精力从事下列主题之物理内涵和机制
研究,包括p 型掺杂ZnO epifilms 和ZnO / ZnMgO 多量子阱和嵌入DBR 腔和自形成的微腔
中的超快载子弛豫、同调声子散射、和同调载子传输现象研究与理论模型。另外,我们也将
基于复数Gross-Pitaevskii 方程的Bogoliubov-de Genned 线性稳定性分析来从事极子凝聚态非
线性动力学研究,例如BKT 相变和涡旋晶格(vortex lattice)之形成等。
Cavity polaritons are quasiparticles resulting from the strong coupling of excitons with
photons confined in a cavity. Their dispersion is remarkably modified with respect to the one of
the bare excitons and photons leading to formation of a minimum at the polariton ground state at
zero momentum. Scattering processes occurring through the interaction among the excitonic
components of the half-light, half-matter quasiparticles and lattice vibrations (acoustic and optical
phonons) are responsible for the energy relaxation, thermalization, and nonlinearities of polaritons.
The stimulated polariton scattering to the final ground state has been used to realize the polariton
laser and polariton Bose-Einstein condensate (BEC) in microcavities and lead to many interesting
macro-quantum phenomena, such as the polariton superfluidity and vortices as well as many
device proposals, e.g., the polariton laser, which does not require the achievement of the gain
condition therefore has a very low threshold.
However, the evolution of such a laser to a useful device requires the polariton BEC at room
temperature (RT). Wide-band-gap semiconductors such as GaN and ZnO have been proposed as
appropriate candidates for RT operation because of their large exciton binding energy and
oscillator strength. RT polariton lasing has been effectively reported in bulk and multiquantum
well GaN microcavities; whereas, the advantage of ZnO with respect to nitrides lies in the larger
exciton binding energy and oscillator strength, leading to Rabi splitting of ~120 meV in bulk
planar cavity and up to 200 meV in ZnO microwires. Recently, polariton lasing and photon
lasing have been demonstrated through polariton scattering in our group with cooperation of Prof.
TC Lu of NCTU and Prof. Hui Deng of U. Michigan using a ZnO-film-based hybrid microcavity
with negative detuning. Essentially, the LO phonon can assist polariton lasing in a bulk
ZnO-based microcavity, in which the lowest threshold of polariton lasing was achieved when the
energy difference between the exciton reservoir and the bottom of the LPB is resonant with the LO
phonon energy.
Therefore, the goal of this three-years proposal is to coordinate PIs with different specialties
to pursue a common research interests on the nonlinear dynamics of microcavity polaritons,
including polariton-polariton, polariton-phonons and acousto-optic scattering processes, and
dynamics of polariton BEC and superfluid, based on ZnO-based materials and quantum structures
or self-formed microcavities. And in this Subproject 1, we will concentrate on the underlying
physics and mechanisms of p-type doping ZnO epifilms and ZnO/ZnMgO multiple quantum wells
embedded in ZnO based DBR cavities, ultrafast carrier relaxation, coherent phonon scattering, and
coherent carrier transport of ZnO-based materials and quantum structures in Fabry-Perot and
self-formed microcavities. Furthermore, we will also investigate the nonlinear dynamics of
polariton condensates such as the Berezinskii-Kosterlitz-Thouless (BKT) transition and formation
of vortex lattice based on the complex Gross-Pitaevskii equation (GPE) and Bogoliubov-de
Genned linear stability analysis.
官方说明文件#: NSC102-2112-M009-016-MY3
URI: http://hdl.handle.net/11536/130006
https://www.grb.gov.tw/search/planDetail?id=11272796&docId=455655
显示于类别:Research Plans