标题: 运用系统生物学建构卵巢癌中微小核醣核酸与基因间调控网路
Deciphering MicroRNA-mediated Regulatory Networks in Ovarian Cancer Using Omics and Systems Biology Approaches
作者: 黄雅蓉
黄宪达
Huang, Ya-Rong
Huang, Hsien-Da
生物资讯及系统生物研究所
关键字: 卵巢癌;微小核醣核酸;DNA 甲基化;化疗反应;Ovarian cancer;MicroRNA;DNA methylation;chemotherapy response
公开日期: 2017
摘要: 卵巢癌死亡率于女性癌症中排名第五,妇科癌症中高居首位,造成高死亡率的主要原因为早期难以诊断,大部分病患确诊癌症时,几乎已经处于疾病后期,且病患经常在治疗期间产生药物抗药性,现今卵巢癌的标准治疗流程都是手术配合铂类药物化疗,然而对于产生抗药性的病患,肿瘤容易复发,化疗反应较差,死亡率也相对提高。
过去多项研究证实,微小核醣核酸、基因及DNA甲基化在癌症中扮演着重要的角色,许多文献针对各种癌症化疗反应做研究,但确切影响卵巢癌化疗反应的机制目前尚未被明确定义,我们希望利用生物资讯分析方法,以探讨卵巢癌中,微小核醣核酸、基因及DNA甲基化三者与化疗反应彼此之间的关联性为研究动机,同时考虑化疗药物抗药性,研究对象锁定接受标准治疗法的病患,针对手术后第一次辅助性化疗包含Carboplatin或是Cisplatin配合Paclitaxel的病患,将病患分为化疗反应佳(CR)及化疗反应差(IR)两组,利用癌症基因图谱(TCGA)资料库的资料进行全面性的分析,找出可能与化疗反应相关的微小核醣核酸,并建立卵巢癌中微小核醣核酸与基因间调控网路及表观基因调控网路。
结果显示19个微小核醣核酸的表现量,在两组病患间具有统计上显着的差异,并有21个基因可能受DNA甲基化影响,微小核醣核酸与基因间的调控网路包含8个微小核醣核酸与12个基因, 1个微小核醣核酸和41个基因与整体存活期(overall survival)相关,2个微小核醣核酸和21个基因与无病存活期(disease-free survival)相关。
我们期望能将此种分析方法应用在其他癌症,且我们的研究结果可作为卵巢癌临床相关与预后的生物标记,有助于识别化疗失败的患者。
Ovarian cancer ranks fifth in cancer deaths among women. It also has the highest mortality rate among all gynecologic cancers, mainly because most patients are diagnosed at late stage and the development of drug resistance. The standard treatment of ovarian cancer is the combination of debulking surgery and platinum-based chemotherapy. However, drug resistance exists and leads to recurrence of tumors and poor prognosis of patients.
Previous studies have confirmed that microRNAs, genes and DNA methylation play important roles in cancer. Several mechanisms have been demonstrated to affect chemotherapy response, but the exact mechanisms are not fully investigated. This research aims to identify the relation between microRNAs, genes, DNA methylation and chemotherapy response. In order to clarify the exact mechanism affected chemotherapy response, we attempted to construct the microRNA and target-gene interaction network and epigenetic regulatory network in ovarian cancer by using The Cancer Genome Atlas (TCGA) data.
We identified 19 significantly differentially expressed miRNAs and 21 hypermethylated genes between two groups of patients with different chemotherapy response. We also constructed the miRNA and target gene interaction network which included 8 miRNAs and 12 genes. One miRNA (miR-363-3p) and 41 genes were associated with overall survival. Two miRNAs (miR-181a-5p and miR-30e-5p) and 21 genes were associated with disease-free survival.
We expect to apply this computational method to the other types of human cancer. This study provides a novel prognostic biomarker for ovarian cancer patients and our findings may identify patients who will fail to chemotherapy.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070457210
http://hdl.handle.net/11536/141689
显示于类别:Thesis