标题: 智慧型ANFIS 马达控制器设计应用于运动物体之追踪
Design of Intelligent ANFIS Motor controller applied to tracking of moving object
作者: 黄志荣
Jhih-Rong Huang
陈永平
Yon-Ping Chen
电控工程研究所
关键字: 马达;移动物体;Motor;moving object
公开日期: 2007
摘要: 本論文目的在于利用智慧型ANFIS控制器以及利用Runge-Kutta 的方法去建立马达的离散模型,并藉由倒传递学习演算法去调整找出ANFIS控制器中近似最佳的参数值,当取样时间太大或者模型有快速的动态变化,那这样一阶的线性近似将不是一个适当方法去估测下一个状态,为了解决这样的问题,可以使用较高阶的Runge-Kutta 的公式,但相对的也会导致较复杂的适应性网路且会使得学习过程变慢。而在此论文中,假如模型变的复杂,则使用二阶Runge-Kutta的公式而言,是相对的较简单,而对于四阶Runge-Kutta的公式而言,又会使得适应性网路变的太复杂,所以在本论文中所使用的为三阶Runge-Kutta的公式去建立马达的模型,然后在做马达的定位到零度的学习,最后在利用学习到的控制器参数去做单个马达角度的追踪以及控制三轴马达的仿人眼系统的运动物体追踪之应用。
The objective of the thesis is to use the intelligent ANFIS controller and to build the discrete PM DC motor by using the Runge-Kutta method, then use the back propagation learning algorithm to find the near-optimal parameters in ANFIS based controller. When the sampling time h is too large or the plant has fast dynamics, the linear approximation may not be a suitable estimate of the next state [5]. In order to solve this problem, the so-called Runge-Kutta method with higher order can be used to implement the plant block. However, the use of higher order Runge-Kutta method often results in more complicated adaptive network and slows down the learning process accordingly. In this thesis, there are used the third order Runge-Kutta formula because the second order is too easy if the model become complex and the fourth order will result complicated adaptive network for the modeling. Then by using the regulation learning of motor to find the parameters in controller applied to angle tracking of one motor and to track the moving object by controlling the humanoid vision system which is three axis actuated by three motors.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009512554
http://hdl.handle.net/11536/38261
显示于类别:Thesis