标题: | 动态车流模式混沌行为发生机制之研究 Chaotic Phnomena and Physical Mechanmis of Dynamic Traffic Model |
作者: | 周家旭 Chou, Chia-Shiou 吴水威 Shoei-Uei Wu 运输与物流管理学系 |
关键字: | 混沌;动态;车流;Chaotic;Dynamic;Traffic |
公开日期: | 1997 |
摘要: | 本文利用混沌理论来探讨动态车流模式之混沌现象,这是一个分析动 态车流模式的新方法.首先,利用离散化之技巧可以从原方程式得到一个非 线性方程式系统组,接着利用动态理论的方法去探讨此一非线性方程式系 统组之行为.利用离散的动态方法去研究交通波动方程式混沌现象是这个 方法的主要概念.根据交通波动方程式之扩散与混沌特性,则此方法有两个 重要的特性,第一,此方法提供了一个研究交通车流模式之新观点,换言之, 此方法可以探索交通波动方程式之混沌现象,第二,与传统的分析方法比 较,则此方法可以直接找出导致车流不稳定之混沌区间.探讨不同边界条件 与所求得之数值结果在本文中有详细的说明与分析,数值结果提供了模式 存在奇异吸子之证据,且会存在一个模式之扩散系数临界值,而当扩散系数 大于临界值时,车流模式会是一个稳定的状态,而当扩散系数小于临界值 时,则车流模式会失去稳定状态,且模式之解的轨迹会是一个奇异吸子. In this thesis, a new approach to analysis chaotic phenomena of dynamic traffic model is presented. We study the traffic wave equations by using chaotic theory. Firstly, a discretization procedure is applied to discretize the traffic wave equation from which a system of nonlinear algeraic equations is obtained. Then, dynamic method is applied to solve the system of the nonlinear algeraic equations. The main concept of this method is that it takes basic chaotic perty of traffic wave equation, and studies the equation by using discretized ynamic method. Based on the fact of a diffusive and chaotic property of traffic wave equation, the proposed new approach has several important properties. Firstly,it provides a new dynamic point of view for traffic flow model. In other words,it explores the chaotic phenomena of traffic wave equation precisely. Secondly, by comparing with a trditional method, this method can find out the unstable region directly.A standard traffic flow model problem under various boundaryconditions has been successfully implemented and several typical numerical results of this model problem are demonstrated and discussed. The results provide evidence for the existence of strange attractors. It shown that there is a critical value above which the solution of the dynamic traffic model is stable and below which the motion becomes highly unstable. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT860118052 http://hdl.handle.net/11536/62651 |
显示于类别: | Thesis |