标题: 场效电晶体高频模型的建立及矽锗合金层应用于高介电物质电晶体对电洞迁移率的改善
RF MOSFET modeling and the improvement of hole mobility of the SiGe high-k PMOSFET
作者: 黄志翔
ChihHsiang Huang
荆凤德
Albert Chin
电子研究所
关键字: 场效电晶体;矽锗合金层;高介电系数物质;电洞迁移率;MOSFET;SiGe layer;High-k dielectric;hole mobility
公开日期: 2002
摘要: 互补式金氧半场效电晶体具有价格便宜、整合性高的优点,因此在一些需要较低功率的射频电路中,有极高的潜力取代高价的三五族制程。对于电路设计者来说,正确的场效电晶体高频模型对于电路是十分地重要的。从我们建立的模型中,可以成功地预测闸极长度从0.18□m到0.13□m的射频电晶体的S参数及杂讯特性,另外,我们也研究了不同元件布局对于高频电晶体相关特性的影响,并且发现在某个元件布局时,可以达到最低的杂讯,这对于低杂讯放大器设计的元件选择是重要的。在电晶体不断地微缩时,我们必须使用高介电系数物质来降低元件关闭时的功率以及增加电晶体的电流驱动力,因为高介电系数的使用,将会降低通道电子电洞的载子迁移率。不过在高频电晶体中,载子的迁移率对于电晶体的操作速度有极大的影响。我们使用了矽锗非应力层的方法来提升电洞的迁移率。利用我们的方法,可以制作出不同锗含量的单晶矽锗非应力层,而且有很平整的表面。另外,从漏电流和电容电压的曲线图,以及可靠度测试的资料中,我们可以发现我们的高介电系数氧化层的品质十分良好。从汲极电流特性中,我们可以发现矽锗的P型电晶体有两倍于矽标准电晶体的驱动力,另外也可以将电洞的迁移率提高1.8倍,有效解决将高介电物质导入未来VLSI技术所遇到的瓶颈。
Because CMOS has advantages of low-cost and highly integrity, it has potential to replace the III-V device in low-power front-end circuit. In the respect of circuit designer, the accurate model is important for circuit performance. In our universal model, we can successfully predict the S-parameter and noise characteristic. In addition, we also study the layout dependent characteristic of RF MOSFET. The optimized finger numbers with optimized noise can be found in both 0.18μm and 0.13μm NMOSFET, which is essential for low noise amplifier designer. Besides, to continuously scale down the dimension of MOSFET, it is unavoidable of using high-□ dielectric to reduce gate leakage current and improve current drive capability. When applying high-□□dielectric, it also degrades the carrier mobility. The operation frequency of RF MOSFET is highly dependent on carrier mobility. We use novel strain-relaxed Si0.3Ge0.7 channel device to improve hole mobility. In our study, we have successfully fabricated single crystalline with different Ge content and smooth surface. As can be seen in leakage current density, C-V characteristic and reliability test of PMOSFET, we found the quality of high-□□and SixGe1-x layer is good. We can also improve the current drive capability and hole mobility to 2 times higher and 1.8 times higher than Si control device. We can efficiently overcome the problems when introducing high-□ dielectric into VLSI technology.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910428164
http://hdl.handle.net/11536/70494
显示于类别:Thesis