标题: 适用于记忆性通道之讯源通道编码研究
A Study of Joint Source-Channel Coding for Channels with Memory
作者: 许亨仰
Heng-Iang Hsu
张文辉
Wen-Whei Chang
电信工程研究所
关键字: 合并讯源通道编码;向量量化;吉伯特通道;哈达码转换;joint source-channel coding;vector quantization;Gilbert channel;Hadamard transform
公开日期: 2002
摘要: 向量量化是目前常见的影音压缩处理技术,其目的在有效运用有限的网路传输频宽与储存容量,但通道失真会改变其编码输出的码字索引进而影响通讯品质。本论文之目的旨在建立有效对抗无线通道失真的合并讯源通道编/解码机制,加强其错误隐蔽功能以维持位元传输的强健性。但目前相关研究主要集中于无记忆性二元对称通道,并不足以反应室内及室外无线通讯环境因多路衰减所衍生的丛发位元错误。因此,我们首先建立具有描述丛发位元错误能力的有限状态马可夫链通道模型,不仅能有效区隔其错误发生属性也能反映不同程度的通道记忆特性。在编码机制方面,我们成功地发展哈达玛转换的分群理论,并配合先前建立的通道模型进行分析,快速实现码字索引指定的设计。至于限定向量码书的建构,首先藉由哈达玛分群理论发展一通道匹配的区段码选择机制,而对于相关对映矩阵的配置,我们重新规划其组成向量的能量分布成为一非线性参数预估问题,并参考基因法则建立其最佳化训练的随机搜寻演算机制。进一步分析发现讯号经量化编码所得的码字索引序列仍存在诸多残存的重覆讯息,依据接收索引值而查表输出的传统解码机制仍有大量的改善空间。因此在解码机制部分,本论文同时考虑存在于单一索引内及相邻索引间位元组合的记忆特性,建立其区块通道转移机率的数学推导,再辅以索引序列残存重覆讯息的运用,成功发展出一通道匹配的最小均方误差解码演算法。另外,我们亦将推导的区块通道转移机率成功地应用于串接式向量量化/回旋解码器,以提升其对抗杂讯的能力。实验结果证实本论文提出的哈达玛转换分群理论以及区块通道转移机率的数学推导,可以充分地利用通道记忆特性来改善合并讯源通道编/解码机制,进而达到对抗无线传输杂讯之目的。
This study investigated the joint source-channel coding techniques for use with vector quantization (VQ) over channels with memory. Most previous research concentrated on memoryless binary symmetric channels, despite evidence showing that transmission errors encountered in indoor and outdoor wireless channels exhibit various degrees of statistical dependencies. To compensate for this shortage, the proposed joint source-channel coder design is based on Gilbert's two-state Markov chain model that better characterizes the observed error bursts. The first part of this study presents two encoding approaches that employ a Hadamard framework for analyzing VQ transmission over noisy channels. We proposed an index assignment algorithm in which pairwise swaps of VQ codevectors were arranged in accordance with Hadamard transform of channel transition probabilities. The decomposition of mapping vector indices becomes especially favorable when the complexity of searching the VQ for optimal indices is of primary concern. Also proposed is a new design approach to constrained VQ codebook design given by a linear mapping of a block code. The Hadamard transform proves effective in describing the VQ codebook, and use of it facilitates the search for a block code which better matches the expected channel condition. To optimize the mapping matrix to a given block code, we formulate its design as a combinatorial optimization problem that is amenable to the application of real-coded hybrid genetic algorithm. The second part of this study is concerned with the decoding algorithms having higher robustness against bursty channel errors. We developed a recursive algorithm for computing the a posteriori probability of a transmitted index sequence, and illustrated its performance in minimum mean-square error (MMSE) decoding of VQ data. The decoder is based on the Gilbert channel model that allows the exploitation of both intra-block and inter-block correlation of bit error sequences. Also proposed is a memory-enhanced convolutional decoder for use with a concatenated VQ/convolutional coding system. Simulation results indicated that with the aid of Gilbert channel characterization the joint source-channel coding algorithms can be developed to better track the intrinsic natures of channel errors.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910435112
http://hdl.handle.net/11536/70650
显示于类别:Thesis