标题: | 具服务品质保证之下世代光纤网路讯务控制机制 Traffic Control Schemes for Next-Generation Optical Networks with QoS-Provisioning |
作者: | 唐文祥 Tang, Wen-Shiang 张仲儒 Chang, Chung-Ju 电信工程研究所 |
关键字: | 光纤网路;光交换技术;光群聚交换技术;排程演算法;频宽分配法;讯务控制;弹性封包环;公平性;桥接弹性封包环;路由控制;Optical Network;Optical switching;Optical burst switching;scheduling algorithm;Bandwidth allocation;traffic control;resilient packet ring;fairness;Bridged resilient packet rings;route control |
公开日期: | 2009 |
摘要: | 本论文的主要专注在下一世代光纤网路的讯务控制机制,其中讨论的网路系统包含有光群聚交换骨干网路(optical burst switching backbone network)、高速都会区域网路(metropolitan area network, MAN)中的封包弹性环(resilient packet ring, RPR)、以及桥接式封包弹性环(bridged resilient packet ring, BRPR)。 我们首先探讨光群聚交换骨干网路中的讯务控制机制。该交换系统兼具光电路交换系统(optical circuit switching, OCS)和光封包交换系统(optical packet switching, OPS)的优点,且所需相关的光处理器也已开发,因以此交换机制比较受青眛。在光群聚交换骨干网路中,频宽的分配只要是以预先保留(Reservation)的方式来处理巨集封包(Burst),再加入了光的缓冲器(Fiber Delay Line)可以使的比较晚到或具较低优先权的封包可以顺利的传送出去。在这样架构下的考量,我们设计一种具光缓冲器分配的权限群聚排程演算法(priority burst scheduling with FDL assignment, PBS-FA)。其主要设计理念是想让具较高优先权的群聚必要情况下可以强制取代已保留给低优先权群聚或群聚长度较短但高优先群聚的频宽,之后再对被牺牲的群聚进行了补偿。 在本篇论文的第二部份,探讨高速都会区域网路中的弹性分封环(Resilient Packet Ring)。在弹性分封环中讯务控制所需考虑的议题主要希望可以达到公平性的频宽分配并且可以快速稳定各讯务流。我们提出一个高效能乏晰公平流速产生器(fuzzy local fairRate generator, FLAG),藉着乏晰运作机制产生一个准确的本地公平流速来抑制壅塞情况并且达成上述考量。所提出的机制,是由三个部份所组成,适应性公平流速计算器(adaptive fairRate calculator, AFC)、乏晰壅塞侦测器(fuzzy congestion detector, FCD)、与乏晰公平流速计算器(fuzzy fairRate generator, FFG)。适应性公平流速计算器产生一个评估过的公平流速而乏晰壅塞侦测器根据次级传输缓冲器(STQ)的容纳量与接收到的流量大小来指出当前的壅塞程度。乏晰公平流速计算器经由考量两项由适应性公平流速计算器与乏晰壅塞侦测器输出的结果来得到反映真实流量状况的本地公平流速。藉由适应性公平流速计算器与乏晰壅塞侦测器的使用,乏晰公平流速产生器可产生较小的收敛时间,再者当与其它演算法相比,在不同大小的壅塞区域中皆获得极好的效果。 最后,我们探讨由桥接器(bridge)键连多个弹性分封环而成的桥接式封包弹性环(bridged resilient packet ring, BRPR)中的路由问题。在此环境中,我们基于载量均衡原则(the load balancing principle)提出一个智慧型跨环路由控制法。该智慧型跨环路由控制法不只同时考虑桥接器以及下游撷点雍塞的情况并且同时考量桥接器的服务速率以及讯务终点站与桥接器的距离。此路由控制法主要包含三个部分:一个是乏晰桥接器雍塞指示器(fuzzy bridge-node congestion indicator, FBCI)、一个是平行串列递回类神经网路下游撷点公平性预测器(pipeline recurrent neural networks (PRNN) downstream-node fairness predictor, PDFP)、一个是乏晰由路控制器(fuzzy route controller, FRC)。从模拟结果来看,该智慧型跨环路由控制法明显改善伫列长度阈控制器(queue length threshold route controller, QTRC)以及最短路径控制器(the shortest path route controller, SPRC)很多。 This dissertation is aimed at tra?c control issue in the next-generation optical network for the optical burst switching (OBS) core network, the resilient packet ring (RPR), which is a metropolitan area network (MAN), and the bridged resilient packet ring (BRPR). First, we propose a priority burst scheduling with ?ber delay line (FDL) assignment (PBS-FA) for the OBS core network. It allows not only high-priority bursts to preempt low-priority ones but also longer high-priority bursts to preempt shorter high-priority ones. Meanwhile it schedules or reschedules these bursts by using FDL assignment. Simulation results reveal that the PBS-FA achieves the higher system throughput and the less average system dropping probability less than a preemptive latest available unused channel with void ?lling (PLAUC-VF) scheme. Second, we propose a local fairRate generator using fuzzy logics and moving average technique for the RPR to achieve the congestion control. The fuzzy local fairRate generator (FLAG) is designed to achieve both low convergence time and high system throughput, besides fairness. It contains three functional blocks: an adaptive fairRate calculator (AFC) to properly pre-produce a local fairRate by moving average technique; a fuzzy congestion detector (FCD) to intelligently estimate the congestion degree of station; ?nally, a fuzzy fairRate generator (FFG) to precisely generate the local fairRate. Simulation results show that only the FLAG can stabilize all ows in parking lot scenarios with di?erent ?nite tra?c demands, compared to conventional the aggressive mode (AM) and distributed bandwidth allocation (DBA) fairness algorithms. Finally, we propose an intelligent inter-ring route control, employed in the bridges which connect two resilient packet rings (RPRs), for the BRPR. The ntelligent interring route controller (IIRC) is designed according to the load balancing principle, where the IIRC considers not only the congestion degree of both bridge and its downstream nodes but also the service rate and the number of hops to destination. It contains three functional blocks implemented by fuzzy logic systems or pipeline recurrent neural networks (PRNN). A fuzzy bridge-node congestion indicator (FBCI) is to detect the congestion degree of the bridge, a PRNN downstream-node fairness predictor (PDFP) is to predict the mean received fairRate from downstream nodes, and a fuzzy route controller (FRC) is to determine a preference value of route according to the congestion indication, the predicted mean received fairRate, the service rate of the bridge, and the number of hops to destination. Simulation results show that the IIRC improves the performances in the packet dropping probability, the average packet delay, and the throughput over the queue length threshold route controller (QTRC) and the shortest path route controller (SPRC). |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009313813 http://hdl.handle.net/11536/78471 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.