标题: | 越快光学及兆赫频波光谱奈米结构研究 Ultrafast optical and THz spectroscopy of nanostructures |
作者: | 安惠荣 AHN HYEYOUNG 国立交通大学光电工程学系(所) |
关键字: | 超快载子动力学;时间解析光致发光光谱;Ultrafast carrier dynamics;time-resolved photoluminescence measurement |
公开日期: | 2013 |
摘要: | ‘超快光谱术’为一种强力的探测技术, 此技术不仅可以探测各种材料的光学与电 学性质,还可以取得材料内的动力学与传输特性。时间解析的吸收、反射与萤光实验已 经被证实有效且实际运用于分析各种材料,不管是原子、分子或固态材料。飞秒雷射的 问世使得人们可以运用兆赫波段,此波段包含了大部分原子、分子的特征频率,因此兆 赫光谱术已经成为一个新的探测材料电性的工具,甚至于使用在非传统材料的分析,例 如半导体奈米结构。近年來我们团队使用光学激发探测技术(optical pump-probe technique)、时间解析发光光谱(time-resolved luminescence technique)以及兆赫波时域光谱 术(THz time-domain spectroscopy),已经成功展示出三族氮化物奈米柱的超快载子动态特 性,兆赫波时域光谱术使我们了解半导体的电子性质与载子散射生命周期。此外,利用” 混合式氮化铟镓/ 金奈米晶体” 金属氧化物半导体结构(hybrid InGaN-nanorod/Au-nanocrystal metal-oxide-semiconductor structure),我们也成功的展示 出三维度次波长綠光电浆子奈米雷射,这项工作代表着跨出主动式电浆子元件的一步, 可以克服被动式电浆子元件所遇到的耗损难题。 本提案中,使用时间解析雷射光谱术,我们将研究与控制在金属氧化物半导体结构 中的同调性表面电浆子,系统性的利用可見光/兆赫波超快光谱术可以让我们分析载子的 激发与弛豫过程,然而在时间解析方面,目前实验室所使用的时间解析度约200皮秒, 不足以研究半导体奈米结构的輻射动力学以及雷射机制,因此在本提案中,我们计画建 构光学升频技术(upconversion),其时间解析会与雷射的时间解析在同一个數量级。实验 室已有的可見光激发可見光探测光谱术(optical-pump optical-probe spectroscopy),此技术 主要是可以靈敏的分析载子占据于能带中的位置,我们也计画建构可見光激发─兆赫波 探测光谱术系统(optical-pump-THz-probe spectroscopy),此技术不仅可以分析载子的密 度,还可以分析载子在带内的分布情形,因此可用來研究被可見光激发的载子,同时得 到载子在带内载子弛豫以及在带间復合的动态过程,而时间解析度与所使用雷射的时间 解析度为同一數量级。我们也将利用可見光与兆赫波光谱系统全面性的研究兩种新的材 料: 具有独特二维原子结构的石墨烯(grapheme),以及一种有机半导体,钛氧酞菁 (titanylphthalocyanine, TiOPc)。我们将研究多层石墨烯的电子以及声子特性,并用來与 单层石墨烯及石墨比较。而利用计画所架构的超快雷射光谱分析系统,研究新的钛氧酞 菁有机半导体材料,可以探测其内部电荷的移转机制,而了解钛氧酞菁分子与其固态半 导体结构的电子特性关聯,将有助于未來有机半导体元件的优化。 Ultrafast optical spectroscopy is a powerful technique for investigating not only optical and electronic properties of various kinds of materials, but also their dynamics and transport properties. The time-resolved absorption, reflection, and luminescence measurement have been practiced to realize the insight of atoms, molecules, and solids. The advent of fs laser system makes it possible to access the THz spectral region of which most of atoms and molecules have their fingerprint modes and THz spectroscopy emerges as a new tool to investigate the electronic properties of even unconventional forms of materials such as semiconductor nanostructures. Recently, we have successfully demonstrated ultrafast carrier dynamics in group III-nitrides nanorods using optical pump-probe technique and the time-resolved luminescence technique. THz time-domain spectroscopy enabled us to realize the electronic properties and the carrier scattering lifetimes of semiconductors. We have also been able to demonstrate the first three-dimensional subwavelength green plasmonic nanolaser based on a hybrid InGaN-nanorod/Au-nanocrystal metal-oxides-semiconductor (MOS) structure. This work represents a significant step toward active plasmonic components, which are urgently needed to overcome the intrinsically lossy feature of passive plasmonic components. In this proposal, we will study and control the characteristics of coherent surface plasmons in MOS nanostructures using the techniques of time-resolved laser spectroscopy. Systematic measurement and analysis based on ultrafast optical/THz spectroscopy will enable us to understand the carrier excitation and relaxation processes. The poor temporal resolution (~200 ps) of our current time-resolve PL system prevents us from realization of the details of the radiative dynamics in semiconductor nanostructures and lasing mechanism. In this proposal, we will construct a time-resolved PL system based on upconversion scheme, the temporal resolution of which is of the order of laser pulses. While optical-pump optical-probe spectroscopy measurements are sensitive primarily to the carrier occupation of specific regions in the energy bands, optical-pump-THz-probe spectroscopy is sensitive to not only the total carrier density but also to the distribution of these carriers in energy within the bands. Optical-pump-THz-probe spectroscopy can therefore be used to simultaneously study both intraband relaxation and interband recombination dynamics of photoexcited electrons and holes on ultrafast time scales. As new target materials, graphene with a unique two-dimensional atomic structure and an organic semiconductor, titanylphthalocyanine (TiOPc) will be investigated with our comprehensive optical/THz spectroscopy system. The electronic as well phononic properties of graphene multilayer, which can be different from those of bulk graphite will be studied and compared with those of graphene monolayer. The optimization of electronic devices based on organic semiconductors demands a better understanding of the inherent charge-transfer mechanism and we will elucidate the relation between structure and electronic properties of TiOPc by using our ultrafast spectroscopic diagnosis system. |
官方说明文件#: | NSC101-2112-M009-012-MY3 |
URI: | http://hdl.handle.net/11536/93142 https://www.grb.gov.tw/search/planDetail?id=2867715&docId=408377 |
显示于类别: | Research Plans |