Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuryliuk, Vasylen_US
dc.contributor.authorNadtochiy, Andriyen_US
dc.contributor.authorKorotchenkov, Olegen_US
dc.contributor.authorWang, Chin-Chien_US
dc.contributor.authorLi, Pei-Wenen_US
dc.date.accessioned2015-07-21T08:28:48Z-
dc.date.available2015-07-21T08:28:48Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1463-9076en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c5cp00129cen_US
dc.identifier.urihttp://hdl.handle.net/11536/124864-
dc.description.abstractWe present a simple theoretical model that predicts the thermal conductivity of SiO2 layers with embedded Ge quantum dots (QDs). Overall, the resulting nanoscale architecture comprising the structural relaxation in the SiO2 matrix, deviation in mass density of the QDs compared to the surrounding matrix and local strains associated with the dots are all likely to enhance phonon scattering and thus reduce the thermal conductivity in these systems. We have found that the conductivity reduction can be predicted by the dot-induced local elastic perturbations in SiO2. Our model is able to explain not only this large reduction but also the magnitude and temperature variation of the thermal conductivity with size and density of the dots. Within the error range, the theoretical calculations of the temperature-dependent thermal conductivity in different samples are in close agreement with the experimental measurements. Including the details of the strain fields in oxidized Si nanostructured layers is therefore essential for a better prediction of the heat pathways in on-chip thermoelectric devices and circuits.en_US
dc.language.isoen_USen_US
dc.titleA model for predicting the thermal conductivity of SiO2-Ge nanoparticle compositesen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c5cp00129cen_US
dc.identifier.journalPHYSICAL CHEMISTRY CHEMICAL PHYSICSen_US
dc.citation.volume17en_US
dc.citation.issue20en_US
dc.citation.spage13429en_US
dc.citation.epage13441en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000354416700029en_US
dc.citation.woscount0en_US
Appears in Collections:Articles