Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 李明佳 | en_US |
dc.contributor.author | LI MING-CHIA | en_US |
dc.date.accessioned | 2014-12-13T10:45:53Z | - |
dc.date.available | 2014-12-13T10:45:53Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.govdoc | NSC99-2115-M009-004-MY2 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/100483 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=2102674&docId=335572 | en_US |
dc.description.abstract | 延續稍早前的論文 [1, 2, 3], 我們打算進一步研究低維度局部系統擾動到高維度系統的混沌問題, 分別以下列不同的假設情況,做出結論的推廣: (SP1) 當局部函數可化成高階差分方程時; (SP2) 當局部函數具有穩定和不穩定方向的雙曲不變集時; (SP3) 當局部函數具有二次錐條件的非雙曲不變集時; (SP4) 當局部函數具有偽軌性質時; (SP5) 當局部函數具有snap-back repeller拓撲屬性時; (SP6) 當低維度系統擾動到無限維系統時; (SP7) 應用上述所得結論到多維度網格系統、反應擴散系統離散模型、及實質的經濟模型等。 [1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811. [2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040. [3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. | zh_TW |
dc.description.abstract | Continuing our earlier works [1,2,3], we plan to study multidimensional perturbations from a low-dimensional local map to a high-dimensional map and generalize results in the following subprojects: (SP1) when the local difference equation is high-order; (SP2) when the local map has hyperbolic invariant set with both stable and unstable directions; (SP3) when the local map has non-hyperbolic invariant set with quadratic cone condition; (SP4) when the local map has shadowing property; (SP5) when the local map has topological property of snap-back repeller; (SP6) when the low-dimensional system is perturbed to infinite-dimensional ones; (SP7) when the above results are applied to high-dimensional lattice systems, numerical models of reaction-diffusion systems, and practical economic models, etc. [1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811. [2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040. [3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 拓樸動態 | zh_TW |
dc.subject | 多維擾動 | zh_TW |
dc.subject | 函蓋關係 | zh_TW |
dc.subject | Liapunov條件 | zh_TW |
dc.subject | topological dynamics | en_US |
dc.subject | multidimensional perturbation | en_US |
dc.subject | covering relation | en_US |
dc.subject | Liapunov condition | en_US |
dc.title | 低維度擾動到高維度系統的混沌動態 | zh_TW |
dc.title | Chaotic Dynamics of High-Dimensional Systems Perturbed from Low-Dimensional Ones | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 國立交通大學應用數學系(所) | zh_TW |
Appears in Collections: | Research Plans |