標題: | 低維度擾動到高維度系統的混沌動態 Chaotic Dynamics of High-Dimensional Systems Perturbed from Low-Dimensional Ones |
作者: | 李明佳 LI MING-CHIA 國立交通大學應用數學系(所) |
關鍵字: | 拓樸動態;多維擾動;函蓋關係;Liapunov條件;topological dynamics;multidimensional perturbation;covering relation;Liapunov condition |
公開日期: | 2010 |
摘要: | 延續稍早前的論文 [1, 2, 3], 我們打算進一步研究低維度局部系統擾動到高維度系統的混沌問題, 分別以下列不同的假設情況,做出結論的推廣:
(SP1) 當局部函數可化成高階差分方程時;
(SP2) 當局部函數具有穩定和不穩定方向的雙曲不變集時;
(SP3) 當局部函數具有二次錐條件的非雙曲不變集時;
(SP4) 當局部函數具有偽軌性質時;
(SP5) 當局部函數具有snap-back repeller拓撲屬性時;
(SP6) 當低維度系統擾動到無限維系統時;
(SP7) 應用上述所得結論到多維度網格系統、反應擴散系統離散模型、及實質的經濟模型等。
[1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811.
[2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040.
[3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. Continuing our earlier works [1,2,3], we plan to study multidimensional perturbations from a low-dimensional local map to a high-dimensional map and generalize results in the following subprojects: (SP1) when the local difference equation is high-order; (SP2) when the local map has hyperbolic invariant set with both stable and unstable directions; (SP3) when the local map has non-hyperbolic invariant set with quadratic cone condition; (SP4) when the local map has shadowing property; (SP5) when the local map has topological property of snap-back repeller; (SP6) when the low-dimensional system is perturbed to infinite-dimensional ones; (SP7) when the above results are applied to high-dimensional lattice systems, numerical models of reaction-diffusion systems, and practical economic models, etc. [1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811. [2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040. [3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. |
官方說明文件#: | NSC99-2115-M009-004-MY2 |
URI: | http://hdl.handle.net/11536/100483 https://www.grb.gov.tw/search/planDetail?id=2102674&docId=335572 |
顯示於類別: | 研究計畫 |