標題: 在週期異質性環境下之反應擴散平流模型的生態問題研究
Reaction-Diffusion-Advection Models for Ecological Problems with the Periodic Heterogeneous Habitats
作者: 張書銘
Chang Shu-Ming
國立交通大學應用數學系(所)
關鍵字: 反應擴散平流模型;演變分散;競爭;Reaction-diffusion-advection model;Evolution of dispersal;Competition
公開日期: 2010
摘要: 本計畫將研究兩個相互競爭的物種之Lotka-Volterra反應擴散平流模型,在改變食物資源分佈下,觀察其物種數量演變的情形。將在二維有界的定義域下,給予週期的異質性環境,進行數值模擬與分析。本計畫將分為三個部分執行:(1)計算方法的建立-在一維定義域下,設定週期的異質性環境,找出有效率且準確的的離散方法來求得競爭模型的解;(2)時間相關的主題研究-針對二維定義域問題,在不同的週期異質性環境設定與參數下進行模擬,期望找尋出不同的物種競爭演變結果;(3)與時間無關的主題研究-剖析分歧現象是否存在於此模型上,進而刻畫出分歧類型,以及進行二維問題上物種競爭結果的穩定性分析。
In this project, to study evolution of conditional dispersal, a Lotka-Volterra reaction-diffusion-advection model for two competing species in a periodic heterogeneous environment is proposed and investigated. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. We hope to develop a high efficient numerical algorithm with suitable discretization methods to deal with this reaction-diffusion-advection model for solving periodic solutions. Moreover, we would like to examine the stability of these solutions and bifurcation phenomena.
官方說明文件#: NSC99-2115-M009-006-MY2
URI: http://hdl.handle.net/11536/100668
https://www.grb.gov.tw/search/planDetail?id=2100844&docId=335152
顯示於類別:研究計畫