Full metadata record
DC FieldValueLanguage
dc.contributor.author張書銘en_US
dc.contributor.authorChang Shu-Mingen_US
dc.date.accessioned2014-12-13T10:46:09Z-
dc.date.available2014-12-13T10:46:09Z-
dc.date.issued2010en_US
dc.identifier.govdocNSC99-2115-M009-006-MY2zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/100668-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2100844&docId=335152en_US
dc.description.abstract本計畫將研究兩個相互競爭的物種之Lotka-Volterra反應擴散平流模型,在改變食物資源分佈下,觀察其物種數量演變的情形。將在二維有界的定義域下,給予週期的異質性環境,進行數值模擬與分析。本計畫將分為三個部分執行:(1)計算方法的建立-在一維定義域下,設定週期的異質性環境,找出有效率且準確的的離散方法來求得競爭模型的解;(2)時間相關的主題研究-針對二維定義域問題,在不同的週期異質性環境設定與參數下進行模擬,期望找尋出不同的物種競爭演變結果;(3)與時間無關的主題研究-剖析分歧現象是否存在於此模型上,進而刻畫出分歧類型,以及進行二維問題上物種競爭結果的穩定性分析。zh_TW
dc.description.abstractIn this project, to study evolution of conditional dispersal, a Lotka-Volterra reaction-diffusion-advection model for two competing species in a periodic heterogeneous environment is proposed and investigated. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. We hope to develop a high efficient numerical algorithm with suitable discretization methods to deal with this reaction-diffusion-advection model for solving periodic solutions. Moreover, we would like to examine the stability of these solutions and bifurcation phenomena.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject反應擴散平流模型zh_TW
dc.subject演變分散zh_TW
dc.subject競爭zh_TW
dc.subjectReaction-diffusion-advection modelen_US
dc.subjectEvolution of dispersalen_US
dc.subjectCompetitionen_US
dc.title在週期異質性環境下之反應擴散平流模型的生態問題研究zh_TW
dc.titleReaction-Diffusion-Advection Models for Ecological Problems with the Periodic Heterogeneous Habitatsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
Appears in Collections:Research Plans