完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 卓訓榮 | en_US |
| dc.contributor.author | CHO HSUN-JUNG | en_US |
| dc.date.accessioned | 2014-12-13T10:48:42Z | - |
| dc.date.available | 2014-12-13T10:48:42Z | - |
| dc.date.issued | 2009 | en_US |
| dc.identifier.govdoc | NSC98-2221-E009-104 | zh_TW |
| dc.identifier.uri | http://hdl.handle.net/11536/101406 | - |
| dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=1898671&docId=314422 | en_US |
| dc.description.abstract | 本篇文章主要提出路側雷達偵測器(Road-side radar detector)應用於多車道的環境下所需要的車種分類器 (vehicle type classifier)。本研究以電壓訊號作為輸入變數,並進一步透過傅利葉轉換成頻譜訊號。利用車輛通過偵測區域時,所得到的特徵值,進行學習模型的樣本。 車種分類器的學習架構包含的模型與演算法,使路側雷達偵測器能依據現實的道路環境,偵測通過的車輛來獲得學習樣本,並即時得到通過的車輛是位於哪一個車道的車種資訊。其中,車種主要區成摩托車,小型車,大型車三類。分類所使用的統計模型為二維的高斯混合型,並利用期望最大化演算法(EM algorithm)求解模型參數。 | zh_TW |
| dc.description.abstract | Counting traffic in a single lane is a basic task that can be achieved by using traffic detectors to detect passing vehicles, but it is difficult for road-side radar system to simultaneously detect different vehicle types in multi-lane environments, since the signals reflected from passing vehicles in a single lane influence neighboring lanes. The spread of reflected signals created difficulty in accurately identifying lane boundaries, and leaded that a vehicle classifier in multi-lane situations is in the experimental stage. The aim of this research is to provide a real-time vehicle type classifier in multilane situations based on the lane boundary results. An on-line learning procedure is proposed to form a vehicle classifier. Such a vehicle classifier will utilize the results of on-line automatic lane boundary estimator, and distinguish the vehicles including motorcycles, small-sized and large-sized vehicle. GMM is applied to form a learning model, and integrates an EM algorithm to maximize the likelihood. The real-world data will be gathered to examine the performance of the vehicle classifier. | en_US |
| dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
| dc.language.iso | zh_TW | en_US |
| dc.subject | 即時 | zh_TW |
| dc.subject | 車種分類 | zh_TW |
| dc.subject | 高斯混合模型 | zh_TW |
| dc.subject | 期望最大化演算法 | zh_TW |
| dc.subject | Real-time | en_US |
| dc.subject | Vehicle classification | en_US |
| dc.subject | Gaussian mixed model | en_US |
| dc.subject | EM algorithm | en_US |
| dc.title | GMM與EM應用於路測雷達偵測器三車種學習演算法的研發 | zh_TW |
| dc.title | Develop Three Vehicles Classifier for Road-Side Radar Detector Using GMM and EM Method | en_US |
| dc.type | Plan | en_US |
| dc.contributor.department | 國立交通大學運輸科技與管理學系(所) | zh_TW |
| 顯示於類別: | 研究計畫 | |

