完整後設資料紀錄
DC 欄位語言
dc.contributor.author卓訓榮en_US
dc.contributor.authorCHO HSUN-JUNGen_US
dc.date.accessioned2014-12-13T10:48:42Z-
dc.date.available2014-12-13T10:48:42Z-
dc.date.issued2009en_US
dc.identifier.govdocNSC98-2221-E009-104zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/101406-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1898671&docId=314422en_US
dc.description.abstract本篇文章主要提出路側雷達偵測器(Road-side radar detector)應用於多車道的環境下所需要的車種分類器 (vehicle type classifier)。本研究以電壓訊號作為輸入變數,並進一步透過傅利葉轉換成頻譜訊號。利用車輛通過偵測區域時,所得到的特徵值,進行學習模型的樣本。 車種分類器的學習架構包含的模型與演算法,使路側雷達偵測器能依據現實的道路環境,偵測通過的車輛來獲得學習樣本,並即時得到通過的車輛是位於哪一個車道的車種資訊。其中,車種主要區成摩托車,小型車,大型車三類。分類所使用的統計模型為二維的高斯混合型,並利用期望最大化演算法(EM algorithm)求解模型參數。zh_TW
dc.description.abstractCounting traffic in a single lane is a basic task that can be achieved by using traffic detectors to detect passing vehicles, but it is difficult for road-side radar system to simultaneously detect different vehicle types in multi-lane environments, since the signals reflected from passing vehicles in a single lane influence neighboring lanes. The spread of reflected signals created difficulty in accurately identifying lane boundaries, and leaded that a vehicle classifier in multi-lane situations is in the experimental stage. The aim of this research is to provide a real-time vehicle type classifier in multilane situations based on the lane boundary results. An on-line learning procedure is proposed to form a vehicle classifier. Such a vehicle classifier will utilize the results of on-line automatic lane boundary estimator, and distinguish the vehicles including motorcycles, small-sized and large-sized vehicle. GMM is applied to form a learning model, and integrates an EM algorithm to maximize the likelihood. The real-world data will be gathered to examine the performance of the vehicle classifier.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject即時zh_TW
dc.subject車種分類zh_TW
dc.subject高斯混合模型zh_TW
dc.subject期望最大化演算法zh_TW
dc.subjectReal-timeen_US
dc.subjectVehicle classificationen_US
dc.subjectGaussian mixed modelen_US
dc.subjectEM algorithmen_US
dc.titleGMM與EM應用於路測雷達偵測器三車種學習演算法的研發zh_TW
dc.titleDevelop Three Vehicles Classifier for Road-Side Radar Detector Using GMM and EM Methoden_US
dc.typePlanen_US
dc.contributor.department國立交通大學運輸科技與管理學系(所)zh_TW
顯示於類別:研究計畫