完整後設資料紀錄
DC 欄位語言
dc.contributor.author徐瑞坤en_US
dc.contributor.authorHSU RAY-QUENen_US
dc.date.accessioned2014-12-13T10:49:56Z-
dc.date.available2014-12-13T10:49:56Z-
dc.date.issued2008en_US
dc.identifier.govdocNSC97-2221-E009-023zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/101916-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1656459&docId=283789en_US
dc.description.abstract鎂合金具有高強度、電磁遮蔽、散熱性佳、耐衝擊性、耐高溫性、耐腐蝕性等優良的材料特性,但因鎂合金的結晶結構屬六方最密堆積,所以其塑性加工性差,展伸材的製造不易,無法以塑性成形的方式進行材料的加工,所以目前工業界對鎂合金材常使用的方法大多是壓鑄法中的冷室壓鑄法、熱室壓鑄法,以及半溶融加工方式中的觸變射出成型。利用鑄造方式雖具有成本低、生產率高、品質穩定、適合大量且快速生產等優點,但壓鑄法仍然有著捲氣、廢料過多、危險易燃、無法製造太薄的物件、鑄件強度低等缺點。若想利用鎂合金製造車用結構部品,必須採用別種加工方式方可符合強度上的需求。因此本計劃之最主要目的即為開發一種可用於半溶融成形的鎂合金胚材,實際進行車用零件如輪圈等之鍛造加工,希望能夠開創出鎂合金新的應用領域。 為了改善鎂合金室溫下成形性不佳之缺點,本計劃將運用半溶融成形加工技術並結合大量塑性變形法來製作所需胚料。本實驗室過去曾對金屬材料的半溶融加工有過許多探討,根據以往的經驗,如何能夠讓在半溶融溫度區間具有良好球狀晶的鎂合金胚料製備,是此製程目前的關鍵所在。雖然傳統應變導引熔漿活化法製備鎂合金半溶融胚料的製程簡單,但胚材內之應變量分佈不均及無法連續進行的缺點,使其至今仍無法有工業上的實際應用。於是我們打算結合如等徑轉角擠製之大量塑性變形法的製程,來給予鎂合金胚材大量且均勻的應變,使胚料能具有奈米等級的超細晶粒,這樣在將胚材昇溫到半溶融區間時,可得到較以往製程更細微的球狀晶,半溶融鍛造加工後的成品強度也將會提高。最後再利用機械性質測試與非破壞檢測來驗證成品的品質好壞。 本計劃預計分三年來完成: (1) 第一年將利用有限元素模擬分析我們構想可進行連續等徑轉角擠製的製程,透過在模擬中改變實驗參數,探討此製程對材料內部應力和應變分佈、模具承受之應力及加工過程鎂合金胚料之溫度變化,找出最佳參數組合,並利用此模擬結果,設計一可進行連續擠製之模具。 (2) 第二年則是將第一年設計的模具實際製造出來,利用此模具來進行連續等徑轉角擠製,然後觀察不同實驗參數下所得胚料的顯微結構,找出可得到均勻分佈超細晶粒的擠製參數,並對照實驗結果與模擬的差異,修正我們所建構的數值模擬模型。 (3) 第三年將利用第二年所製備之胚料,實際進行車用零件的半溶融鍛造加工,觀察其外觀與充填性,驗證鎂合金之半溶融良好成形性,且透過機械性質測試與非破壞檢測來驗證成品品質。 綜合這三年的研究成果,希望能開發出一可進行連續等徑轉角擠製製程,並且提出一套可行之數值模擬模型,讓開發人員能夠簡化分析製造半溶融胚料的流程,最後提出半溶融觸變鍛造應用於鎂合金的相關製程條件,以期能對未來將此製程之實用化有所貢獻。zh_TW
dc.description.abstractRecently, the growing demand for light-weight products with high strength products in automobile and aircraft industries have push the application of magnesium alloys into a unprecedented high level in these fields. Magnesium has the lowest density among the metals. Its strength-to-weight ratio is the highest of all the structural metals. Because of the ease of recycling, magnesium alloys attract the attention even in the consumer electronic industry. Fabrication of magnesium alloys are often processed by die casting, casting and sometimes thixo-forming since they have limited ductility at room temperature. All of these manufacturing methods have disadvantages especially when a very thin section or better mechanical properties are required. In this study, semi-solid forming technique which has the advantage of lower forming load and suitable for materials that have little ductility will be adopted for the processing of magnesium alloys. In order to improve the homogeneity of the grain size in the microstructure of the magnesium alloys billets, the alloys are intended to subject severe plastic deformation named continuous ECAE, in room temperature. Then with proper heat treatment, the alloys are expected to develop a nano-crystalline structure which in turn will bring better mechanical properties. Finally the magnesium alloys will be applied for forming an automobile part. The study is composed of the following stages: (1) Finite element simulation of the continuous ECAE. Design and analysis of the ECAE extrusion device. (2) Perform ECAE extrusion, heat treatment of the magnesium alloy billet, investigating the microstruction of the alloy.. (3) Apply the nano-crystalline material for the fabrication of an automobile part. Compare the mechanical properties of the part with the part made of the conventional forming methods.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject等徑轉角擠製zh_TW
dc.subject應變導引熔漿活化法zh_TW
dc.subject半溶融觸變鍛造zh_TW
dc.subjectECAE ( Equal Channel Angular Extrusion )en_US
dc.subjectSIMA (Strain Induced MeltActivation )en_US
dc.subjectsemi-solid thixo-forgingen_US
dc.title利用具超細晶粒胚材進行半固態鍛造加工之研究zh_TW
dc.titleStudy on the Semi-Solid Forging Process with Ultra-Fine Grain Magnesium Billetsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學機械工程學系(所)zh_TW
顯示於類別:研究計畫