完整后设资料纪录
DC 栏位语言
dc.contributor.author徐瑞坤en_US
dc.contributor.authorHSU RAY-QUENen_US
dc.date.accessioned2014-12-13T10:49:56Z-
dc.date.available2014-12-13T10:49:56Z-
dc.date.issued2008en_US
dc.identifier.govdocNSC97-2221-E009-023zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/101916-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1656459&docId=283789en_US
dc.description.abstract镁合金具有高强度、电磁遮蔽、散热性佳、耐冲击性、耐高温性、耐腐蚀性等优良的材料特性,但因镁合金的结晶结构属六方最密堆积,所以其塑性加工性差,展伸材的制造不易,无法以塑性成形的方式进行材料的加工,所以目前工业界对镁合金材常使用的方法大多是压铸法中的冷室压铸法、热室压铸法,以及半溶融加工方式中的触变射出成型。利用铸造方式虽具有成本低、生产率高、品质稳定、适合大量且快速生产等优点,但压铸法仍然有着卷气、废料过多、危险易燃、无法制造太薄的物件、铸件强度低等缺点。若想利用镁合金制造车用结构部品,必须采用别种加工方式方可符合强度上的需求。因此本计划之最主要目的即为开发一种可用于半溶融成形的镁合金胚材,实际进行车用零件如轮圈等之锻造加工,希望能够开创出镁合金新的应用领域。
为了改善镁合金室温下成形性不佳之缺点,本计划将运用半溶融成形加工技术并结合大量塑性变形法来制作所需胚料。本实验室过去曾对金属材料的半溶融加工有过许多探讨,根据以往的经验,如何能够让在半溶融温度区间具有良好球状晶的镁合金胚料制备,是此制程目前的关键所在。虽然传统应变导引熔浆活化法制备镁合金半溶融胚料的制程简单,但胚材内之应变量分布不均及无法连续进行的缺点,使其至今仍无法有工业上的实际应用。于是我们打算结合如等径转角挤制之大量塑性变形法的制程,来给予镁合金胚材大量且均匀的应变,使胚料能具有奈米等级的超细晶粒,这样在将胚材升温到半溶融区间时,可得到较以往制程更细微的球状晶,半溶融锻造加工后的成品强度也将会提高。最后再利用机械性质测试与非破坏检测来验证成品的品质好坏。
本计划预计分三年来完成:
(1) 第一年将利用有限元素模拟分析我们构想可进行连续等径转角挤制的制程,透过在模拟中改变实验参数,探讨此制程对材料内部应力和应变分布、模具承受之应力及加工过程镁合金胚料之温度变化,找出最佳参数组合,并利用此模拟结果,设计一可进行连续挤制之模具。
(2) 第二年则是将第一年设计的模具实际制造出来,利用此模具来进行连续等径转角挤制,然后观察不同实验参数下所得胚料的显微结构,找出可得到均匀分布超细晶粒的挤制参数,并对照实验结果与模拟的差异,修正我们所建构的数值模拟模型。
(3) 第三年将利用第二年所制备之胚料,实际进行车用零件的半溶融锻造加工,观察其外观与充填性,验证镁合金之半溶融良好成形性,且透过机械性质测试与非破坏检测来验证成品品质。
综合这三年的研究成果,希望能开发出一可进行连续等径转角挤制制程,并且提出一套可行之数值模拟模型,让开发人员能够简化分析制造半溶融胚料的流程,最后提出半溶融触变锻造应用于镁合金的相关制程条件,以期能对未来将此制程之实用化有所贡献。
zh_TW
dc.description.abstractRecently, the growing demand for light-weight products with high strength products in automobile and aircraft industries have push the application of magnesium alloys into a unprecedented high level in these fields. Magnesium has the lowest density among the metals. Its strength-to-weight ratio is the highest of all the structural metals. Because of the ease of recycling, magnesium alloys attract the attention even in the consumer electronic industry.
Fabrication of magnesium alloys are often processed by die casting, casting and sometimes thixo-forming since they have limited ductility at room temperature. All of these manufacturing methods have disadvantages especially when a very thin section or better mechanical properties are required.
In this study, semi-solid forming technique which has the advantage of lower forming load and suitable for materials that have little ductility will be adopted for the processing of magnesium alloys. In order to improve the homogeneity of the grain size in the microstructure of the magnesium alloys billets, the alloys are intended to subject severe plastic deformation named continuous ECAE, in room temperature. Then with proper heat treatment, the alloys are expected to develop a nano-crystalline structure which in turn will bring better mechanical properties. Finally the magnesium alloys will be applied for forming an automobile part.
The study is composed of the following stages:
(1) Finite element simulation of the continuous ECAE. Design and analysis of the ECAE extrusion device.
(2) Perform ECAE extrusion, heat treatment of the magnesium alloy billet, investigating the microstruction of the alloy..
(3) Apply the nano-crystalline material for the fabrication of an automobile part. Compare the mechanical properties of the part with the part made of the conventional forming methods.
en_US
dc.description.sponsorship行政院国家科学委员会zh_TW
dc.language.isozh_TWen_US
dc.subject等径转角挤制zh_TW
dc.subject应变导引熔浆活化法zh_TW
dc.subject半溶融触变锻造zh_TW
dc.subjectECAE ( Equal Channel Angular Extrusion )en_US
dc.subjectSIMA (Strain Induced MeltActivation )en_US
dc.subjectsemi-solid thixo-forgingen_US
dc.title利用具超细晶粒胚材进行半固态锻造加工之研究zh_TW
dc.titleStudy on the Semi-Solid Forging Process with Ultra-Fine Grain Magnesium Billetsen_US
dc.typePlanen_US
dc.contributor.department国立交通大学机械工程学系(所)zh_TW
显示于类别:Research Plans