完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, R. J.en_US
dc.contributor.authorLin, S. Y.en_US
dc.contributor.authorShih, C. W.en_US
dc.date.accessioned2014-12-08T15:13:18Z-
dc.date.available2014-12-08T15:13:18Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2006.08.035en_US
dc.identifier.urihttp://hdl.handle.net/11536/10274-
dc.description.abstractIn addition to sharing and applying the knowledge in the community, knowledge discovery has become an important issue in the knowledge economic era. Data mining plays an important role of knowledge discovery. Therefore, this study intends to propose a novel framework of data mining which clusters the data first and then followed by association rules mining. The first stage employs the ant system-based clustering algorithm (ASCA) and ant K-means (AK) to cluster the database, while the ant colony system-based association rules mining algorithm is applied to discover the useful rules for each group. The medical database provided by the National Health Insurance Bureau of Taiwan Government is used to verify the proposed method. The evaluation results showed that the proposed method not only is able to extract the rules much faster, but also can discover more important rules. (c) 2006 Published by Elsevier Ltd.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectant colony systemen_US
dc.subjectclusteren_US
dc.subjectassociation ruleen_US
dc.titleMining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwanen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2006.08.035en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume33en_US
dc.citation.issue3en_US
dc.citation.spage794en_US
dc.citation.epage808en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000245754400026-
dc.citation.woscount15-
顯示於類別:期刊論文


文件中的檔案:

  1. 000245754400026.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。