標題: 以發展新穎的乙醇轉化劑和陽極材料來製造出乾淨及高效率的乙醇固態氧化物燃料電池
From the Development of Novel Ethanol Reformer and Anode Materials to the Completion of the Clean and Highly Efficient Ethanol Solid-State Oxide Fuel Cell (Sofc)
作者: 王禎翰
Wang Jeng-Han
國立交通大學應用化學系(所)
公開日期: 2008
摘要: 本研究計畫的目的是要發展出更好的乙醇轉化劑(ethanol reformer)和陽極材料以 用來設計一部更好的發電機。此發電機將應用高效率的固態氧化物燃料電池(SOFC) 直接地(或通過內部轉化劑)來運用乾淨和可再生的乙醇燃料(於此稱之為乙醇固態氧 化物燃料電池)。具有優良乙醇轉化效率的先進催化劑和具有良好電導率與乙醇氧化能 力的電催化劑將被研究發現,以用來增進乙醇固態氧化物燃料電池的效率、降低製造成 本和提高其使用的耐久性。在此,乙醇轉化劑整合的氫氣固態氧化物燃料電池和直接乙 醇固態氧化物燃料電池將被廣泛的學習並充分的最佳化以達到其最佳的表現。比起傳統 的燃燒式引擎,本計畫所架構出的發電機將能產生更大的功率密度,能減少石化燃料的 消耗量並顯著地降低溫室效應中二氧化碳的排放。 本研究計畫將使用複合式的實驗與計算方法來研究化學合成、電化學測試和反應機 制。最開始,一些有潛力的乙醇轉化劑和固態氧化物燃料電池的材料將被合成並檢驗其 適當的化學組成、形態和結構。一個乙醇固態氧化物燃料電池將由這些材料來建構完 成。此完整的電池將用來測試其系統的性能並優化操作條件。另外,這些實驗上的觀察 結果將藉由從對物質特性的詳細分析和對反應機制的整體檢驗來被清楚的瞭解。這些基 礎研究將利用表面增強拉曼光譜(SERS)、針尖增強拉曼光譜(TERS)、第一原理計算 法(first principles calculation)和起始原理原子熱力學(ab initio atomistic thermodynamics) 來做有系統地調查。這些研究也可以幫助我們架構有用的材料設計規則,減少實驗上的 錯誤嘗試並加速新材料在乙醇固態氧化物燃料電池上的發現。 本研究計畫的目標是在三年之內完成乙醇固態氧化物燃料電池的研究。在間接的乙 醇固態氧化物燃料電池中,乙醇轉化劑的氫氣供應率將能夠達到5-10毫升/分鐘, 而整體的功率密度將能夠達到0.5瓦/平方公分。在直接的乙醇固態氧化物燃料電池 中,也能成功的展示同樣的表現。乙醇轉化劑和固態氧化物燃料電池的工作持久性將超 過500個小時。本研究計畫中的電池也可更進一步地訂製成大尺度的乙醇發電機以應 用在實際的需求。另外, 在反應機制研究中所方展的即時性光譜儀和材料設計規則都對 未來材料化學的研究有很大的幫助。
The objective of this work is to develop better ethanol reformers and anode materials with the aim to design a better power generator, which applies the efficient solid oxide fuel cell (SOFC) to directly utilize (or through internally reform) the clean and renewable ethanol fuel, the so-called ethanol SOFC. The advanced catalysts with excellent ethanol reforming efficiency and the superior electro-catalysts with good electrical conductivity and ethanol oxidation ability will be discovered to improve the power efficient, lower the fabrication cost and enhance the operational durability in the ethanol SOFC. Both the ethanol reformer integrated with hydrogen SOFC and the direct ethanol SOFC will be extensively studied and fully optimized to reach the best performance. The proposed power generator will have a much higher power density then typical combustion engines, be able to reduce the consumption of fossil fuels and reduce the green house CO2 emission significantly. This project will employ the hybrid experimental/computational approach in the studies of chemical synthesis, electrochemical measurements as well as mechanism elucidation. Initially, the promising ethanol reformers and SOFC materials will be synthesized and examined to determine the appropriate material compositions, morphologies and structures. The complete ethanol SOFC, which will be fabricated from these materials, will be tested for the system performance and optimized for the operational condition. In addition, these experimental observations will be clearly understood from the detailed analysis of material properties and the comprehensive examination of reaction mechanisms. These fundamental studies, which will be systematically investigated by the in situ surface and tip enhanced Raman spectroscopy, first principles calculations and ab initio atomistic thermodynamics, can help us construct the useful design rule to reduce the effort of experimental trial and error and speed up the discovery of novel materials in the ethanol SOFC application. The goal within the three years is to complete an indirect ethanol power generator with the H2 supply rate up to 5-10 ml/minute from the ethanol reformer and the power density up to 0.5 W/cm2 from the reformer integrated SOFC. The direct ethanol SOFC will be successfully demonstrated with the same performance as well. The long term stability of the reformer and SOFC system will be examined up to 500 hours. The resulted ethanol SOFC is possible to be scaled up and customized for the practical application. In addition, the tools, the in situ spectroscopic apparatus and the material design rule, implemented in the mechanism study will be useful in the future research of material chemistry.
官方說明文件#: NSC97-2113-M003-006
URI: http://hdl.handle.net/11536/102803
https://www.grb.gov.tw/search/planDetail?id=1616796&docId=276392
Appears in Collections:Research Plans


Files in This Item:

  1. 972113M003006.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.