標題: | 有界算子數值域的研究 Numerical Ranges of Bounded Operators |
作者: | 吳培元 WU PEI YUAN 國立交通大學應用數學系(所) |
關鍵字: | 數值域;n S -矩陣;伴隨矩陣;Toeplitz 矩陣;Hankel 矩陣;數值半徑;Numerical range;n S -matrix;companion matrix;Toeplitz matrix;Hankel matrix;numerical radius. |
公開日期: | 2008 |
摘要: | 在此一三年期的研究計畫中,我們將對在希伯特空間上的有界線性算子的數值域
作一有系統而詳盡的研究。第一年中,我們將集中心力於有限維空間上的算子或有限
矩陣。基於過去所作的相關研究成果,我們將專注於兩類矩陣,即Sn -矩陣和伴隨矩陣。
第二年將考慮其他類型的矩陣,例如Toeplitz 矩陣、Hankel 矩陣和形如, 1 [ ]n
ij i j a = 之矩陣,
其中對每一k (1 ? k ? n),i=k或j=k時, ij a 之值均相同。我們希望對比此等矩陣之數
值域和其無窮維空間上的對應算子二者性質之共同與相異之處。第三年將專注於無窮
維空間上算子數值域之研究。我們特別想解決一已懸疑多年的問題:設A 為二次型算
子且B和A可交換,則是否w(AB) ? A w(B)和w(AB) ? w(A) B 成立,此處w(?)表示
算子之數值半徑。 In this three-year project, we plan to launch a detailed study of properties of the numerical ranges of bounded linear operators on a complex Hilbert space. For the first year, we will concentrate on operators on finite-dimensional spaces, which amount to the same as finite matrices. Based on our previous works, we will concentrate on two types of matrices, namely, the n S -matrices and companion matrices. In the second year, we move onto other types of finite matrices such as the Toeplitz matrices, Hankel matrices and matrices of the form , 1 [ ]n ij a i j= with the aij 刪s identical for i=k or j=k (1 . k . n) . Properties of their numerical ranges will be contrasted with the ones for their infinite-dimensional analogues. The third year will be devoted to the study of numerical ranges of infinite-dimensional operators. We have in mind in particular of proving the numerical radius inequalities w(AB) . A w(B) and w(AB) . w(A) B for a quadratic operator A commuting with an operator B . |
官方說明文件#: | NSC96-2115-M009-013-MY3 |
URI: | http://hdl.handle.net/11536/102822 https://www.grb.gov.tw/search/planDetail?id=1581004&docId=270723 |
顯示於類別: | 研究計畫 |