完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Li, Chung-Ping | en_US |
dc.contributor.author | Wu, Chia-Hao | en_US |
dc.contributor.author | Wei, Kung-Hwa | en_US |
dc.contributor.author | Sheu, Jeng-Tzong | en_US |
dc.contributor.author | Huang, Jung Y. | en_US |
dc.contributor.author | Jeng, U-Ser | en_US |
dc.contributor.author | Liang, Keng S. | en_US |
dc.date.accessioned | 2014-12-08T15:13:20Z | - |
dc.date.available | 2014-12-08T15:13:20Z | - |
dc.date.issued | 2007-09-24 | en_US |
dc.identifier.issn | 1616-301X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/adfm.200600637 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/10319 | - |
dc.description.abstract | This study involves the collective electron transport behavior of sequestered Au nanoparticles in a nanostructured polystyrene-block-poly(4-vinylpyridine). The monolayer thin films (ca. 30 nm) consisting of Au nanoparticles self-assembled in the 30-nm spherical poly (4-vinylpyridine) domains of an polystyrene-block-poly (4-vinylpyridine) diblock copolymer were prepared. From the current-voltage characteristics of these thin films, the collective electron transport behavior of Au nanoparticles sequestered in the spherical poly (4-vinylpyridine) nanodomains was found to be dictated by Coulomb blockade and was quasi one-dimensional, as opposed to the three-dimensional behavior displayed by An nanoparticles that had been dispersed randomly in homo-poly(4-vinylpyridine). The threshold voltage of these composite increased linearly upon increasing the inter-nanoparticle distance. The electron tunneling rate constant in the case of Au nanoparticles confined in poly(4-vinylpyridine) nanodomains is eight times larger than that in the randomly distributed case and it increases upon increasing the amount of Au nanoparticles. This phenomenon indicates that manipulating the spatial arrangement of metal nanoparticles by diblock copolymer can potentially create electronic devices with higher performance. | en_US |
dc.language.iso | en_US | en_US |
dc.title | The effect of nanoscale confinement on the collective electron transport behavior in an nanoparticles self-assembled in a nanostructured polystyrene-block-poly(4-vinylpyridine) diblock copolymer ultra-thin film | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/adfm.200600637 | en_US |
dc.identifier.journal | ADVANCED FUNCTIONAL MATERIALS | en_US |
dc.citation.volume | 17 | en_US |
dc.citation.issue | 14 | en_US |
dc.citation.spage | 2283 | en_US |
dc.citation.epage | 2290 | en_US |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | 材料科學與工程學系奈米科技碩博班 | zh_TW |
dc.contributor.department | 電子物理學系 | zh_TW |
dc.contributor.department | 光電工程學系 | zh_TW |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.contributor.department | Graduate Program of Nanotechnology , Department of Materials Science and Engineering | en_US |
dc.contributor.department | Department of Electrophysics | en_US |
dc.contributor.department | Department of Photonics | en_US |
dc.identifier.wosnumber | WOS:000250018800004 | - |
dc.citation.woscount | 19 | - |
顯示於類別: | 期刊論文 |