Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorFan, Kang-Weien_US
dc.contributor.authorPu, Her-Changen_US
dc.contributor.authorLu, Shih-Maoen_US
dc.contributor.authorLiang, Sheng-Fuen_US
dc.date.accessioned2014-12-08T15:13:36Z-
dc.date.available2014-12-08T15:13:36Z-
dc.date.issued2007-08-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2006.889875en_US
dc.identifier.urihttp://hdl.handle.net/11536/10505-
dc.description.abstractIn this paper, a novel human visual system (HVS)directed neural-network-based adaptive interpolation scheme for natural image is proposed. A fuzzy decision system built from the characteristics of the HVS is proposed to classify pixels of the input image into human perception nonsensitive class and sensitive class. Bilinear interpolation is used to interpolate the nonsensitive regions and a neural network is proposed to interpolate the sensitive regions along edge directions. High-resolution digital images along with supervised learning algorithms are used to automatically train the proposed neural network. Simulation results demonstrate that the proposed new resolution enhancement algorithm can produce a higher visual quality for the interpolated image than the conventional interpolation methods.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy decision systemen_US
dc.subjecthuman visual systemen_US
dc.subjectimage interpolationen_US
dc.subjectneural networken_US
dc.subjectresolution enhancementen_US
dc.titleAn HVS-Directed neural-network-based image resolution enhancement scheme for image resizingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2006.889875en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume15en_US
dc.citation.issue4en_US
dc.citation.spage605en_US
dc.citation.epage615en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department生物科技學系zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248703700007-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000248703700007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.