Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorHsu, Yung-Chien_US
dc.date.accessioned2014-12-08T15:13:36Z-
dc.date.available2014-12-08T15:13:36Z-
dc.date.issued2007-08-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2006.889920en_US
dc.identifier.urihttp://hdl.handle.net/11536/10506-
dc.description.abstractThis paper proposes a recurrent wavelet-based neurofuzzy system (RWNFS) with the reinforcement hybrid evolutionary learning algorithm (R-HELA) for solving various control problems. The proposed R-HELA combines the compact genetic algorithm (CGA), and the modified variable-length genetic algorithm (MVGA) performs the structure/parameter learning for dynamically constructing the RWNFS. That is, both the number of rules and the adjustment of parameters in the RWNFS are designed concurrently by the R-HELA. In the R-HELA, individuals of the same length constitute the same group. There are multiple groups in a population. The evolution of a population consists of three major operations: group reproduction using the compact genetic algorithm, variable two-part crossover, and variable two-part mutation. Illustrative examples were conducted to show the performance and applicability of the proposed R-HELA method.en_US
dc.language.isoen_USen_US
dc.subjectcontrolen_US
dc.subjectgenetic algorithmsen_US
dc.subjectneurofuzzy systemen_US
dc.subjectrecurrent networken_US
dc.subjectreinforcement learningen_US
dc.titleReinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2006.889920en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume15en_US
dc.citation.issue4en_US
dc.citation.spage729en_US
dc.citation.epage745en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248703700016-
dc.citation.woscount27-
Appears in Collections:Articles


Files in This Item:

  1. 000248703700016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.