完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Tao-Hsingen_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.date.accessioned2014-12-08T15:13:37Z-
dc.date.available2014-12-08T15:13:37Z-
dc.date.issued2007-08-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2006.889911en_US
dc.identifier.urihttp://hdl.handle.net/11536/10530-
dc.description.abstractSubtopic segmentation is a critical task in numerous applications, including information retrieval, automatic summarization, essay scoring, and others. Although several approaches have been developed, many are ineffective for specific domains with a small corpus because of the fuzziness of the semantics of words and sentences in the corpus. This paper explores the problem of subtopic segmentation by proposing a fuzzy model for the semantics of both words and sentences. The model has three characteristics. First, it can deal with the uncertainty in the semantics of words and sentences. Secondly, it can measure the fuzzy similarity between the fuzzy semantics of sentences. Thirdly, it can develop a fuzzy algorithm for segmenting a text into several subtopic segments. The experiments, especially for a short text with a small corpus in a specific domain, indicate that the method can efficiently increase the accuracy of subtopic segmentation over previous methods.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy modelingen_US
dc.subjectfuzzy semanticsen_US
dc.subjectsemantic similarity measurementen_US
dc.subjectsmall corpusen_US
dc.subjecttopic segmentationen_US
dc.titleSubtopic segmentation for small corpus using a novel fuzzy modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2006.889911en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume15en_US
dc.citation.issue4en_US
dc.citation.spage699en_US
dc.citation.epage709en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000248703700013-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248703700013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。