完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Hsiang-Chunen_US
dc.contributor.authorWang, Chung-Nengen_US
dc.contributor.authorChiang, Tihaoen_US
dc.contributor.authorHang, Hsuch-Mingen_US
dc.date.accessioned2014-12-16T06:16:16Z-
dc.date.available2014-12-16T06:16:16Z-
dc.date.issued2005-09-08en_US
dc.identifier.govdocH04N007/12zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/105730-
dc.description.abstractThe present invention relates to an architecture for stack robust fine granularity scalability (SRFGS), more particularly, SRFGS providing simultaneously temporal scalability and SNR scalability. SRFGS first simplifies the RFGS temporal prediction architecture and then generalizes the prediction concept as the following: the quantization error of the previous layer can be inter-predicted by the reconstructed image in the previous time instance of the same layer. With this concept, the RFGS architecture can be extended to multiple layers that forming a stack to improve the temporal prediction efficiency. SRFGS can be optimized at several operating points to fit the requirements of various applications while the fine granularity and error robustness of RFGS are still remained. The experiment results show that SRFGS can improve the performance of RFGS by 0.4 to 3.0 dB in PSNR.zh_TW
dc.language.isozh_TWen_US
dc.titleArchitecture for stack robust fine granularity scalabilityzh_TW
dc.typePatentsen_US
dc.citation.patentcountryUSAzh_TW
dc.citation.patentnumber20050195896zh_TW
顯示於類別:專利資料


文件中的檔案:

  1. 20050195896.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。