完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorChung, I-Fangen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorChen, Yu-Chiehen_US
dc.contributor.authorLiang, Sheng-Fuen_US
dc.contributor.authorDuann, Jeng-Renen_US
dc.date.accessioned2014-12-08T15:13:42Z-
dc.date.available2014-12-08T15:13:42Z-
dc.date.issued2007-07-01en_US
dc.identifier.issn0018-9294en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TBME.2007.891164en_US
dc.identifier.urihttp://hdl.handle.net/11536/10595-
dc.description.abstractAccidents caused by errors and failures in human performance among traffic fatalities have a high death rate and become an important issue in public security. They are mainly caused by the failures of the drivers to perceive the changes of the traffic lights or the unexpected conditions happening accidentally on the roads. In this paper, we devised a quantitative analysis for assessing driver's cognitive responses by investigating the neurobiological information underlying electroencephalographic (EEG) brain dynamics in traffic-light experiments in a virtual-reality (VR) dynamic driving environment. The VR technique allows subjects to interact directly with the moving virtual environment instead of monotonic auditory and visual stimuli, thereby provides interactive and realistic tasks without the risk of operating on an actual machine. Independent component analysis (ICA) is used to separate and extract noise-free ERP signals from the multi-channel EEG signals. A temporal filter is used to solve the time-alignment problem of ERP features and principle component analysis (PCA) is used to reduce feature dimensions. The dimension-reduced features are then input to a self-constructing neural fuzzy inference network (SONFIN) to recognize different brain potentials stimulated by red/green/yellow traffic events, the accuracy can be reached 87% in average eight subjects in this visual-stimuli ERP experiment. It demonstrates the feasibility of detecting and analyzing multiple streams of ERP signals that represent operators' cognitive states and responses to task events.en_US
dc.language.isoen_USen_US
dc.subjectcognitive stateen_US
dc.subjectevent-related potentialen_US
dc.subjectfuzzy neural networken_US
dc.subjectindependent component analysisen_US
dc.subjectprinciple component analysisen_US
dc.subjecttemporal filteren_US
dc.subjectvirtual realityen_US
dc.titleEEG-Based assessment of driver cognitive responses in a dynamic virtual-reality driving environmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2007.891164en_US
dc.identifier.journalIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERINGen_US
dc.citation.volume54en_US
dc.citation.issue7en_US
dc.citation.spage1349en_US
dc.citation.epage1352en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000247390700020-
dc.citation.woscount27-
顯示於類別:期刊論文


文件中的檔案:

  1. 000247390700020.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。