Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiao, Ying-Jieen_US
dc.contributor.authorShieh, Min-Zhengen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2014-12-08T15:13:48Z-
dc.date.available2014-12-08T15:13:48Z-
dc.date.issued2007-06-28en_US
dc.identifier.issn1077-8926en_US
dc.identifier.urihttp://hdl.handle.net/11536/10668-
dc.description.abstractThe dartboard problem is to arrange n numbers on a circle to obtain maximum risk, which is the sum of the q-th power of the absolute differences of adjacent numbers, for q >= 1. Curtis showed that the dartboard problem admits a greedy algorithm. We generalize the dartboard problem by considering more circles and the goal is to arrange kn number on k circles to obtain the maximum risk. In this paper, we characterize an optimal arrangement for k = 2 and show that the generalized dartboard problem also admits a greedy algorithm.en_US
dc.language.isoen_USen_US
dc.titleArranging numbers on circles to reach maximum total variationsen_US
dc.typeArticleen_US
dc.identifier.journalELECTRONIC JOURNAL OF COMBINATORICSen_US
dc.citation.volume14en_US
dc.citation.issue1en_US
dc.citation.epageen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000247618800002-
dc.citation.woscount2-
Appears in Collections:Articles