Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liao, Ying-Jie | en_US |
dc.contributor.author | Shieh, Min-Zheng | en_US |
dc.contributor.author | Tsai, Shi-Chun | en_US |
dc.date.accessioned | 2014-12-08T15:13:48Z | - |
dc.date.available | 2014-12-08T15:13:48Z | - |
dc.date.issued | 2007-06-28 | en_US |
dc.identifier.issn | 1077-8926 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/10668 | - |
dc.description.abstract | The dartboard problem is to arrange n numbers on a circle to obtain maximum risk, which is the sum of the q-th power of the absolute differences of adjacent numbers, for q >= 1. Curtis showed that the dartboard problem admits a greedy algorithm. We generalize the dartboard problem by considering more circles and the goal is to arrange kn number on k circles to obtain the maximum risk. In this paper, we characterize an optimal arrangement for k = 2 and show that the generalized dartboard problem also admits a greedy algorithm. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Arranging numbers on circles to reach maximum total variations | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ELECTRONIC JOURNAL OF COMBINATORICS | en_US |
dc.citation.volume | 14 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.epage | en_US | |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000247618800002 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |