完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChoi, YongManen_US
dc.contributor.authorMebane, David S.en_US
dc.contributor.authorLin, M. C.en_US
dc.contributor.authorLiu, Meilinen_US
dc.date.accessioned2014-12-08T15:14:18Z-
dc.date.available2014-12-08T15:14:18Z-
dc.date.issued2007-04-03en_US
dc.identifier.issn0897-4756en_US
dc.identifier.urihttp://dx.doi.org/10.1021/cm062616een_US
dc.identifier.urihttp://hdl.handle.net/11536/10931-
dc.description.abstractCubic perovskite LaMnO3 surface models were constructed to elucidate the mechanism of oxygen reduction using quantum chemical calculations with molecular dynamics (MD) simulations. Calculations predict that both dissociative and molecular adsorption may occur, depending on adsorbate configurations. Superoxo- or peroxo-like species may locate at La, Mn, and O-sub active sites with different vibrational frequencies and atomic charges. A stepwise elementary reaction sequence via the superoxo- or peroxo-like intermediates at both perfect and defective LaMnO3 was constructed by mapping out minimum-energy paths (MEPs) using the nudged elastic band (NEB) method. Charge transfer for the O-2-LaMnO3 interactions was also explored by Bader charge analysis. In particular, ab initio MD simulations carried out to simulate solid oxide fuel cell conditions at 1073 K suggest that oxygen vacancies enhance O-2 dissociation kinetics.en_US
dc.language.isoen_USen_US
dc.titleOxygen reduction on LaMnO3-based cathode materials in solid oxide fuel cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/cm062616een_US
dc.identifier.journalCHEMISTRY OF MATERIALSen_US
dc.citation.volume19en_US
dc.citation.issue7en_US
dc.citation.spage1690en_US
dc.citation.epage1699en_US
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000245208100023-
dc.citation.woscount49-
顯示於類別:期刊論文


文件中的檔案:

  1. 000245208100023.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。