完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yu-Chiunen_US
dc.contributor.authorTseng, Po-Hsuanen_US
dc.contributor.authorFeng, Kai-Tenen_US
dc.date.accessioned2014-12-08T15:14:23Z-
dc.date.available2014-12-08T15:14:23Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-0265-6en_US
dc.identifier.issn1550-2252en_US
dc.identifier.urihttp://hdl.handle.net/11536/10977-
dc.identifier.urihttp://dx.doi.org/10.1109/VETECS.2007.186en_US
dc.description.abstractLocation estimation and tracking for the mobile devices have attracted a significant amount of attention in recent years. The network-based location estimation schemes have been widely adopted based on the radio signals between the mobile device and the base stations. The location estimators associated with the Kalman filtering techniques are exploited to both acquire location estimation and trajectory tracking for the mobile devices. However, most of the existing schemes become unapplicable due to the insufficiency of signal sources. In this paper, a Predictive Location Tracking (PLT) algorithm is proposed to alleviate this problem. The predictive information obtained from the Kalman filter is employed to provide the additional signal inputs for the location estimators. The proposed PLT scheme can offer persistent accuracy for location tracking of the mobile devices, especially with inadequate signal sources. Numerical results demonstrate that the proposed PLT algorithm can achieve better precision, comparing with other existing schemes, in mobile location estimation and tracking.en_US
dc.language.isoen_USen_US
dc.titleA predictive location tracking algorithm for mobile devices with deficient signal sourcesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/VETECS.2007.186en_US
dc.identifier.journal2007 IEEE 65TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6en_US
dc.citation.spage859en_US
dc.citation.epage863en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000252237600174-
顯示於類別:會議論文


文件中的檔案:

  1. 000252237600174.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。