Full metadata record
DC FieldValueLanguage
dc.contributor.authorTien, Min-Chunen_US
dc.contributor.authorChen, Hua-Tsungen_US
dc.contributor.authorChen, Yi-Wenen_US
dc.contributor.authorHsiao, Ming-Hoen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.date.accessioned2014-12-08T15:14:36Z-
dc.date.available2014-12-08T15:14:36Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-0728-6en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/11077-
dc.description.abstractIn this paper, we propose a system that can automatically segment a basketball video into several clips on the basis of a GOP-based scene change detection method. The length of each clip and the number of dominant color pixels of each frame are used to classify shots into close-up view, medium view, and full court view. Full court view shots are chosen to do advanced analyses such as ball tracking and parameter extracting for the transformation from a 3D real-world court to a 2D image. After that, we map points in the 2D image to the corresponding coordinates in a real-world court by some physical properties of the 3D shooting trajectory, and compute the statistics of all shooting positions. Eventually we can obtain the information about the most possible shooting positions of a professional basketball team, which is useful for opponents to adopt appropriate defense tactics.en_US
dc.language.isoen_USen_US
dc.subjectscene change detectionen_US
dc.subjectdominant coloren_US
dc.subjectshot classificationen_US
dc.subjecttrackingen_US
dc.subjectcamera calibrationen_US
dc.titleShot classification of basketball videos and its application in shooting position extractionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGSen_US
dc.citation.spage1085en_US
dc.citation.epage1088en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000249040000272-
Appears in Collections:Conferences Paper