Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Chien-Lung | en_US |
dc.contributor.author | Lin, Jiunn-Lee | en_US |
dc.contributor.author | Lai, Ling-Ping | en_US |
dc.contributor.author | Pan, Chun-Hsu | en_US |
dc.contributor.author | Huang, Shoei K. Stephen | en_US |
dc.contributor.author | Lin, Chih-Sheng | en_US |
dc.date.accessioned | 2014-12-08T15:14:37Z | - |
dc.date.available | 2014-12-08T15:14:37Z | - |
dc.date.issued | 2007-03-01 | en_US |
dc.identifier.issn | 0925-4439 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.bbadis.2006.10.017 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11084 | - |
dc.description.abstract | Atrial fibrillation (AF) is the most common progressive disease in patients with cardiac arrhythmia. AF is accompanied by complex atrial remodeling and changes in gene expression, but only a limited number of transcriptional regulators have been identified. Using a low-density cDNA array, we identified 31 genes involved in transcriptional regulation, signal transduction or structural components, which were either significantly upregulated or downregulated in porcine atria with fibrillation (induced by rapid atrial pacing at a rate of 400-600 bpm for 4 weeks that was then maintained without pacing for 2 weeks). The genes for four and a half LIM domains protein-1 (FHL1), transforming growth factor-beta (TGF-beta)-stimulated clone 22 (TSC-22), and cardiac ankyrin repeat protein (CARP) were significantly upregulated, and chromosome 5 open reading frame gene 13 (P311) was downregulated in the fibrillating atria. FHL1 and CARP play important regulatory roles in cardiac remodeling by transcriptional regulation and myofilament assembly. Induced mRNA expression of both FHL1 and CARP was also observed when cardiac H9c2 cells were treated with an adrenergic agonist. Increasing TSC-22 and marked P311 deficiency could enhance the activity of TGF-beta signaling and the upregulated TGF-beta 1 and -beta 2 expressions were identified in the fibrillating atria. These results implicate that observed alterations of underlying molecular events were involved in the rapid-pacing induced AF, possibly via activation of the beta-adrenergic and TGF-beta signaling. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | atrial fibrillation | en_US |
dc.subject | low-density cDNA array | en_US |
dc.subject | transcriptional regulator | en_US |
dc.subject | transforming growth factor-beta signaling | en_US |
dc.title | Altered expression of FHL1, CARP, TSC-22 and P311 provide insights into complex transcriptional regulation in pacing-induced atrial fibrillation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.bbadis.2006.10.017 | en_US |
dc.identifier.journal | BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | en_US |
dc.citation.volume | 1772 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 317 | en_US |
dc.citation.epage | 329 | en_US |
dc.contributor.department | 生物科技學系 | zh_TW |
dc.contributor.department | Department of Biological Science and Technology | en_US |
dc.identifier.wosnumber | WOS:000244908700004 | - |
dc.citation.woscount | 21 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.