完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chuah, Meng-Kiat | en_US |
dc.date.accessioned | 2014-12-08T15:14:46Z | - |
dc.date.available | 2014-12-08T15:14:46Z | - |
dc.date.issued | 2007-02-01 | en_US |
dc.identifier.issn | 0013-0915 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1017/S0013091505000453 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11159 | - |
dc.description.abstract | Let G be the abelian Lie group R(n) x R(k)/Z(k), acting on the complex space X = R(n+k) x iG. Let F be a strictly convex function on R(n+k). Let H be the Bergman space of holomorphic functions on X which are square-integrable with respect to the weight e(-F). The G-action on X leads to a unitary G-representation on the Hilbert space H. We study the irreducible representations which occur in H by means of their direct integral. This problem is motivated by geometric quantization, which associates unitary representations with invariant Kahler forms. As an application, we construct a model in the sense that every irreducible G-representation occurs exactly once in H. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Bergman space | en_US |
dc.subject | direct integral | en_US |
dc.subject | unitary representation | en_US |
dc.subject | model | en_US |
dc.title | The direct integral of some weighted Bergman spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1017/S0013091505000453 | en_US |
dc.identifier.journal | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY | en_US |
dc.citation.volume | 50 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 115 | en_US |
dc.citation.epage | 122 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000244663600008 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |