完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuah, Meng-Kiaten_US
dc.date.accessioned2014-12-08T15:14:46Z-
dc.date.available2014-12-08T15:14:46Z-
dc.date.issued2007-02-01en_US
dc.identifier.issn0013-0915en_US
dc.identifier.urihttp://dx.doi.org/10.1017/S0013091505000453en_US
dc.identifier.urihttp://hdl.handle.net/11536/11159-
dc.description.abstractLet G be the abelian Lie group R(n) x R(k)/Z(k), acting on the complex space X = R(n+k) x iG. Let F be a strictly convex function on R(n+k). Let H be the Bergman space of holomorphic functions on X which are square-integrable with respect to the weight e(-F). The G-action on X leads to a unitary G-representation on the Hilbert space H. We study the irreducible representations which occur in H by means of their direct integral. This problem is motivated by geometric quantization, which associates unitary representations with invariant Kahler forms. As an application, we construct a model in the sense that every irreducible G-representation occurs exactly once in H.en_US
dc.language.isoen_USen_US
dc.subjectBergman spaceen_US
dc.subjectdirect integralen_US
dc.subjectunitary representationen_US
dc.subjectmodelen_US
dc.titleThe direct integral of some weighted Bergman spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0013091505000453en_US
dc.identifier.journalPROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETYen_US
dc.citation.volume50en_US
dc.citation.issueen_US
dc.citation.spage115en_US
dc.citation.epage122en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000244663600008-
dc.citation.woscount2-
顯示於類別:期刊論文