完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuah, Meng-Kiaten_US
dc.date.accessioned2014-12-08T15:15:02Z-
dc.date.available2014-12-08T15:15:02Z-
dc.date.issued2007en_US
dc.identifier.issn0933-7741en_US
dc.identifier.urihttp://hdl.handle.net/11536/11314-
dc.identifier.urihttp://dx.doi.org/10.1515/FORUM.2007.033en_US
dc.description.abstractLet G be a real semisimple Lie group. We equip invariant presymplectic forms omega to some fibration X over the flag domain of G. By applying geometric quantization to (X, omega), we obtain a unitary G-representation H whose subrepresentations are infinitesimally equivalent to the Zuckerman modules. The occurence of the Zuckerman modules H are controlled by the image of the moment map of omega. This leads to our notion of Zuckerman model.en_US
dc.language.isoen_USen_US
dc.titleGeometric quantization and Zuckerman models of semisimple Lie groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/FORUM.2007.033en_US
dc.identifier.journalFORUM MATHEMATICUMen_US
dc.citation.volume19en_US
dc.citation.issue5en_US
dc.citation.spage823en_US
dc.citation.epage850en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000250744400003-
dc.citation.woscount0-
顯示於類別:期刊論文