完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ruey-Shunen_US
dc.contributor.authorChang, Chan-Chineen_US
dc.date.accessioned2014-12-08T15:15:10Z-
dc.date.available2014-12-08T15:15:10Z-
dc.date.issued2007en_US
dc.identifier.issn0268-1900en_US
dc.identifier.urihttp://hdl.handle.net/11536/11395-
dc.identifier.urihttp://dx.doi.org/10.1504/IJMPT.2007.014722en_US
dc.description.abstractData mining is part of the knowledge discovery process that offers a new way to look at data. It consists of the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. It is the discovery of patterns that lie hidden among a set of data. A Bayesian networks is a specific model of knowledge network. It offers useful information about the mutual dependencies among the features in the application domain. Such information can be used for gaining better understanding about the dynamics of the process under observation. Manufacturing process monitoring using Bayesian networks is a quite useful example. In this paper, we provide Bayesian networks to extract knowledge from data. We present an approach for the Bayesian networks to implement a data mining task for computer integrated manufacturing (CIM). It could find the cause factors in various parameters that affect in semiconductor cleaning process.en_US
dc.language.isoen_USen_US
dc.subjectBayesian networksen_US
dc.subjectcomputer integrated manufacturing (CIM)en_US
dc.subjectdata miningen_US
dc.subjectknowledge discovery in databases (KDD)en_US
dc.titleUsing Bayesian networks to build data mining applications for a semiconductor cleaning processen_US
dc.typeArticleen_US
dc.identifier.doi10.1504/IJMPT.2007.014722en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGYen_US
dc.citation.volume30en_US
dc.citation.issue4en_US
dc.citation.spage386en_US
dc.citation.epage407en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000249610900005-
dc.citation.woscount0-
顯示於類別:期刊論文