完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, An-Pin | en_US |
dc.contributor.author | Lin, Hsio-Yi | en_US |
dc.date.accessioned | 2014-12-08T15:15:50Z | - |
dc.date.available | 2014-12-08T15:15:50Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.isbn | 978-1-4244-0705-7 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11812 | - |
dc.identifier.uri | http://dx.doi.org/10.1109/CIDM.2007.368952 | en_US |
dc.description.abstract | Artificial neural networks (ANNs) are promising approaches for financial time series prediction and have been widely applied to handle finance problems because of its nonlinear structures. However, ANNs have some limitations in evaluating the output nodes as a result of single-point values. This study proposed a hybrid model, called Fuzzy BPN, consisting of backpropagation neural network (BPN) and fuzzy membership function for taking advantage of nonlinear features and interval values instead of the shortcoming of single-point estimation. In addition, the experimental processing can demonstrate the feasibility of applying the hybrid model-Fuzzy BPN and the empirical results show that Fuzzy BPN provides a useful alternative to exchange rate forecasting. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | backpropagation neural network | en_US |
dc.subject | fuzzy membership function | en_US |
dc.subject | exchange rate | en_US |
dc.title | Exchange rates forecasting using a hybrid fuzzy and neural network model | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/CIDM.2007.368952 | en_US |
dc.identifier.journal | 2007 IEEE Symposium on Computational Intelligence and Data Mining, Vols 1 and 2 | en_US |
dc.citation.spage | 758 | en_US |
dc.citation.epage | 763 | en_US |
dc.contributor.department | 資訊管理與財務金融系 註:原資管所+財金所 | zh_TW |
dc.contributor.department | Department of Information Management and Finance | en_US |
dc.identifier.wosnumber | WOS:000249119800109 | - |
顯示於類別: | 會議論文 |