Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Miao-Hsiangen_US
dc.contributor.authorShih, Tian-Yuanen_US
dc.date.accessioned2014-12-08T15:16:04Z-
dc.date.available2014-12-08T15:16:04Z-
dc.date.issued2006-08-01en_US
dc.identifier.issn0099-1112en_US
dc.identifier.urihttp://hdl.handle.net/11536/11933-
dc.description.abstractAn accuracy assessment of two lidar-derived elevation datasets was conducted in areas of rugged terrain (average slope 26.6 degrees). Data from 906 ground checkpoints in various land-cover types were collected in situ as reference points. Analysis of the accuracy of lidar-derived elevation as a function of several factors including terrain slope, terrain aspect, and land-cover types was conducted. This paper attempts to characterize vegetation information derived from lidar data based on variables such as canopy volume, local roughness of point clouds, point spacing of lidar ground returns, and vegetation angle. This information was used to evaluate the accuracy of elevation as a function of vegetation type. The experimental results revealed that the accuracy of elevation was considerably correlated with five factors: terrain slope, vegetation angle, canopy volume, local roughness of point clouds, and point spacing of lidar ground returns. The results show a linear relationship between the elevation accuracy and the combination of vegetation angle and the point spacing of ground returns (r(2) > 0.9). The combination of vegetation angle and point spacing of ground returns explains a significant amount of the variability in elevation accuracy. Elevation accuracy varied with different vegetation types. The elevation accuracy was also linearly correlated with the product of the point spacing of ground returns and the tangent of the slope (r(2) = 0.9). A greater product value implies a greater elevation error. In addition, with regard to terrain aspect, one dense dataset with extra cross-flight data revealed a lesser impact Of aspect on elevation accuracy.en_US
dc.language.isoen_USen_US
dc.titleError assessment in two lidar-derived TIN datasetsen_US
dc.typeArticleen_US
dc.identifier.journalPHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSINGen_US
dc.citation.volume72en_US
dc.citation.issue8en_US
dc.citation.spage933en_US
dc.citation.epage947en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000239417400009-
dc.citation.woscount6-
Appears in Collections:Articles