完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Terng-Renen_US
dc.contributor.authorChen, Chi-Shien_US
dc.contributor.authorHsu, Terng-Yinen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2014-12-08T15:16:26Z-
dc.date.available2014-12-08T15:16:26Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-0582-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/12167-
dc.description.abstractin this work, we base on generalized multi-layered perceptron neural networks with backpropagation algorithm (Generalized MLP/BP) to construct multi-input multi-output (MIMO) decision feedback equalizers (DFEs). The proposal is used to recover distorted nonretum-to-zero (NRZ) data in wireline parallel bandlimited channels. From the simulations, we note that the proposed design can recover severe distorted NRZ data as well as suppress intersymbol interference (ISI), adjacent channel interference (ACI) and background noise. The better BER performance as compared to a set of LMS DFEs and an MLPIBP-based MIMO DFE is achieved in the wireline parallel band-limited channels where the data rate is ten times as much as the channel bandwidth.en_US
dc.language.isoen_USen_US
dc.titleGeneralized MLP/BP-based MIMO DFEs for overcoming ISI and ACI in band-limited channelsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2007 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Proceedings of Technical Papersen_US
dc.citation.spage103en_US
dc.citation.epage106en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000247000000026-
顯示於類別:會議論文