Full metadata record
DC FieldValueLanguage
dc.contributor.authorShieh, Gen_US
dc.date.accessioned2014-12-08T15:16:27Z-
dc.date.available2014-12-08T15:16:27Z-
dc.date.issued2006-06-01en_US
dc.identifier.issn0013-1644en_US
dc.identifier.urihttp://dx.doi.org/10.1177/0013164405278584en_US
dc.identifier.urihttp://hdl.handle.net/11536/12173-
dc.description.abstractThis article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are incomplete and oversimplified. The proposed approach also allows a natural extension for multiple regression with more than two predictor variables. It is shown that the conditions under which both types of suppression can occur are not fully congruent with the significance of the partial F test. This implies that all the standard variable selection techniques-backward elimination, forward selection, and stepwise regression procedures-can fail to detect suppression situations. This also explains the controversial findings in the redundancy or importance of correlated variables in applied settings. Furthermore, informative visual representations of various aspects of these phenomena are provided.en_US
dc.language.isoen_USen_US
dc.subjectcoefficient of multiple determinationen_US
dc.subjectextra sum of squaresen_US
dc.subjectpartial F testen_US
dc.subjectsuppressor variableen_US
dc.subjectvariable selectionen_US
dc.titleSuppression situations in multiple linear regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1177/0013164405278584en_US
dc.identifier.journalEDUCATIONAL AND PSYCHOLOGICAL MEASUREMENTen_US
dc.citation.volume66en_US
dc.citation.issue3en_US
dc.citation.spage435en_US
dc.citation.epage447en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000237628100005-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000237628100005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.