標題: Suppression situations in multiple linear regression
作者: Shieh, G
管理科學系
Department of Management Science
關鍵字: coefficient of multiple determination;extra sum of squares;partial F test;suppressor variable;variable selection
公開日期: 1-Jun-2006
摘要: This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are incomplete and oversimplified. The proposed approach also allows a natural extension for multiple regression with more than two predictor variables. It is shown that the conditions under which both types of suppression can occur are not fully congruent with the significance of the partial F test. This implies that all the standard variable selection techniques-backward elimination, forward selection, and stepwise regression procedures-can fail to detect suppression situations. This also explains the controversial findings in the redundancy or importance of correlated variables in applied settings. Furthermore, informative visual representations of various aspects of these phenomena are provided.
URI: http://dx.doi.org/10.1177/0013164405278584
http://hdl.handle.net/11536/12173
ISSN: 0013-1644
DOI: 10.1177/0013164405278584
期刊: EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT
Volume: 66
Issue: 3
起始頁: 435
結束頁: 447
Appears in Collections:Articles


Files in This Item:

  1. 000237628100005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.