完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, CTen_US
dc.contributor.authorChen, LSen_US
dc.contributor.authorChiang, TLen_US
dc.date.accessioned2014-12-08T15:16:27Z-
dc.date.available2014-12-08T15:16:27Z-
dc.date.issued2006-06-01en_US
dc.identifier.issn0166-3615en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.compind.2006.01.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/12175-
dc.description.abstractIn the cellular phone OEM/ODM industry, reducing test time and cost are crucial due to fierce competition, short product life cycle, and a low margin environment. Among the inspection processes, the radio frequency (RF) function test process requires more operation time than any other. Hence, manufacturers need an effective method to reduce the RF test items so that the inspection time can be reduced while maintaining the quality of the RF function test. However, traditional feature selection methods such as neural networks and genetic algorithm lead to a high level of Type II error in the situation of imbalanced data where the amount of good products is far greater than the defective products. In this study, we propose a neural network based information granulation approach to reduce the RF test items for the finished goods inspection process of a cellular phone. Implementation results show that the RF test items were significantly reduced, and that the inspection accuracy remains very close to that of the original testing process. In addition, the Type II errors decreased as well. (C) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcellular phone inspection processen_US
dc.subjectfeature selectionen_US
dc.subjectinformation granulationen_US
dc.subjectfuzzy ART neural networken_US
dc.subjectimbalanced dataen_US
dc.titleA neural network based information granulation approach to shorten the cellular phone test processen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compind.2006.01.001en_US
dc.identifier.journalCOMPUTERS IN INDUSTRYen_US
dc.citation.volume57en_US
dc.citation.issue5en_US
dc.citation.spage412en_US
dc.citation.epage423en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000238301800003-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000238301800003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。