Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeh, MSen_US
dc.contributor.authorLin, YPen_US
dc.contributor.authorChang, LCen_US
dc.date.accessioned2014-12-08T15:16:38Z-
dc.date.available2014-12-08T15:16:38Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn0943-0105en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00254-006-0190-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/12275-
dc.description.abstractThe optimal selection of monitoring wells is a major task in designing an information-effective groundwater quality monitoring network which can provide sufficient and not redundant information of monitoring variables for delineating spatial distribution or variations of monitoring variables. This study develops a design approach for an optimal multivariate geostatistical groundwater quality network by proposing a network system to identify groundwater quality spatial variations by using factorial kriging with genetic algorithm. The proposed approach is applied in designing a groundwater quality monitoring network for nine variables (EC, TDS, Cl-, Na, Ca, Mg, SO42-, Mn and Fe) in the Pingtung Plain in Taiwan. The spatial structure results show that the variograms and cross-variograms of the nine variables can be modeled in two spatial structures: a Gaussian model with ranges 28.5 kin and a spherical model with 40 km for short and long spatial scale variations, respectively. Moreover, the nine variables can be grouped into two major components for both short and long scales. The proposed optimal monitoring design model successfully obtains different optimal network systems for delineating spatial variations of the nine groundwater quality variables by using 20, 25 and 30 monitoring wells in both short scale (28.5 km) and long scale (40 km). Finally, the study confirms that the proposed model can design an optimal groundwater monitoring network that not only considers multiple groundwater quality variables but also monitors variations of monitoring variables at various spatial scales in the study area.en_US
dc.language.isoen_USen_US
dc.subjectgroundwater qualityen_US
dc.subjectmonitoring network designen_US
dc.subjectfactorial krigingen_US
dc.subjectoptimizationen_US
dc.subjectspatial variationen_US
dc.subjectPingtung Plainen_US
dc.subjectTaiwanen_US
dc.titleDesigning an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00254-006-0190-8en_US
dc.identifier.journalENVIRONMENTAL GEOLOGYen_US
dc.citation.volume50en_US
dc.citation.issue1en_US
dc.citation.spage101en_US
dc.citation.epage121en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000237731500010-
dc.citation.woscount21-
Appears in Collections:Articles


Files in This Item:

  1. 000237731500010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.