完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWei, Ling-Yinen_US
dc.contributor.authorHsu, Ya-Tingen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.contributor.authorLee, Wang-Chienen_US
dc.date.accessioned2015-07-21T11:21:10Z-
dc.date.available2015-07-21T11:21:10Z-
dc.date.issued2014-12-01en_US
dc.identifier.issn1574-1192en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.pmcj.2013.07.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/123876-
dc.description.abstractWith the proliferation of smart phones and location-based services, the amount of data with spatial information, referred to as spatial data, is dramatically increasing. Cloud computing plays an important role handling large-scale data analysis, and several cloud data managements (CDMs) have been developed for processing data. CDMs usually provide key-value storage, where each key is used to access its corresponding value. However, user-generated spatial data are usually distributed non-uniformly. In this paper, we present a novel key design based on an R+-tree (KR+-index) for retrieving skewed spatial data efficiently. In the experiments, we implement the KR+-index on Cassandra, and study its performance using spatial data. Experiments show that the KR+-index outperforms the-state-of-the-art methods. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCloud data managementen_US
dc.subjectGeographic dataen_US
dc.subjectSpatial indexen_US
dc.titleIndexing spatial data in cloud data managementsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.pmcj.2013.07.001en_US
dc.identifier.journalPERVASIVE AND MOBILE COMPUTINGen_US
dc.citation.volume15en_US
dc.citation.spage48en_US
dc.citation.epage61en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000345523900004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 000345523900004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。