標題: Location and Number of Selenium Atoms in Two-Dimensional Conjugated Polymers Affect Their Band-Gap Energies and Photovoltaic Performance
作者: Jiang, Jian-Ming
Raghunath, Putikam
Lin, Hsi-Kuei
Lin, Yu-Che
Lin, M. C.
Wei, Kung-Hwa
材料科學與工程學系
應用化學系
Department of Materials Science and Engineering
Department of Applied Chemistry
公開日期: 28-十月-2014
摘要: We synthesized and characterized a series of novel two-dimensional Se-atom-substituted donor (D)-p-acceptor (A) conjugated polymersPBDTTTBO, PBDTTTBS, PBDTTSBO, PBDTSTBO, PBDTTSBS, PBDTSTBS, PBDTSSBO, and PBDTSSBSfeaturing benzodithiophene (BDT) as the donor, thiophene (T) as the p-bridge, and 2,1,3-benzooxadiazole (BO) as the acceptor with different number of Se atoms at different p-conjugated locations, including the pi-bridge, side chain, and electron-withdrawing units. We then systematically investigated the effect of different locations and the number of Se atoms in these two-dimensional conjugated polymers on the structural, optical, and electronics such as band-gap energies of the resulting polymers, as determined through quantum-chemical calculations, UVvis absorption spectra, and grazing-incidence X-ray diffraction. We found that through the rational structural modification of the 2-D conjugated Se-substituted polymers the resulting PCEs could vary over 3-fold (from 2.4 to 7.6%), highlighting the importance of careful selection of appropriate chemical structures such as the location of Se atoms when designing efficient D-p-A polymers for use in solar cells. Among these tested BO-containing polymers, PBDTSTBO that has moderate band gaps and good open-circuit voltages (up to 0.86 V) when mixed with PC71BM (1:2, w/w) provided the highest power conversion efficiency (7.6%) in a single-junction polymer solar cell, suggesting that these polymers have potential applicability as donor materials in the bulk heterojunction polymer solar cells.
URI: http://dx.doi.org/10.1021/ma501720k
http://hdl.handle.net/11536/123960
ISSN: 0024-9297
DOI: 10.1021/ma501720k
期刊: MACROMOLECULES
Volume: 47
Issue: 20
起始頁: 7070
結束頁: 7080
顯示於類別:期刊論文