Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hung-Juen_US
dc.contributor.authorLi, Ming-Chiaen_US
dc.date.accessioned2015-07-21T08:28:59Z-
dc.date.available2015-07-21T08:28:59Z-
dc.date.issued2015-02-01en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2014.10.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/124027-
dc.description.abstractIn this paper, we study complexity of solutions of a high-dimensional difference equation of the form Phi(x(i-m), . . . , x(i-1), x(i), x(i+1), . . . , x(i+n)) = 0, i is an element of Z, where Phi is a C-1 function from (R-l)(m+n+1) to R-l. Our main result provides a sufficient condition for any sufficiently small C-1 perturbation of Phi to have symbolic embedding, that is, to possess a closed set of solutions Lambda that is invariant under the shift map, such that the restriction of the shift map to Lambda is topologically conjugate to a subshift of finite type. The sufficient condition can be easily verified when Phi depends on few variables, including the logistic and Henon families. To prove the result, we establish a global version of the implicit function theorem for perturbed equations. The proof of the main result is based on the Brouwer fixed point theorem, and the proof of the global implicit function theorem is based on the contraction mapping principle and other ingredients. Our novel approach extends results in [2,3,8,15,21]. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSymbolic embeddingen_US
dc.subjectMultidimensional perturbationen_US
dc.subjectDifference equationen_US
dc.subjectImplicit function theoremen_US
dc.titleStability of symbolic embeddings for difference equations and their multidimensional perturbationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2014.10.008en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume258en_US
dc.citation.spage906en_US
dc.citation.epage918en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000347268100010en_US
dc.citation.woscount0en_US
Appears in Collections:Articles